Araştırma Makalesi
BibTex RIS Kaynak Göster

Makro gözenekli karbonun peroksidaz mimik aktivitesi

Yıl 2023, Cilt: 6 Sayı: 2, 77 - 80, 30.12.2023
https://doi.org/10.46239/ejbcs.1215182

Öz

Bu çalışmada, silika şablonu kullanılarak üretilen makro gözenekli karbonun peroksidaz mimik aktivitesi araştırılmıştır. Makro gözenekli karbonun nanozim aktivitesi, ticari grafen oksit ile karşılaştırıldı. Karbonun alan emisyon taramalı elektron mikroskobu görüntüsü, makro gözenekli morfolojiyi ortaya çıkardı. Nanozim aktivitesi, kromojenik substrat 2,2'-azino-bis(3-etilbenzotiazolin-6-sülfonik asidin (ABTS) hidrojen peroksit varlığında katalitik oksidasyonu yoluyla incelenmiştir ve yeşil renkli ABTS'nin oksitlenmiş formu gözle görülebilecek şekilde oluştu. İşlevselleştirme ve enzim kullanımı olmadan, elde edilen makro gözenekli karbon yeşil renk gelişimi gösterdi, bu da muhtemelen geniş yüzey alanı ve dolayısıyla yüzeyde bulunan bol miktarda aktif bölge nedeniyle peroksidaz aktivitesini gösteriyor. Karbonizasyon sırasında oluşan oksijen içeren fonksiyonel gruplar, aktif bölgeler olarak davranabilir ve peroksidazı taklit eden aktivitede çok önemli bir rol oynayabilir.

Kaynakça

  • Çakıroğlu B, Çiğil-Beyler A, Ogan A, Kahraman MV, Demir S. 2018. Covalent immobilization of acetylcholinesterase on a novel polyacrylic acid-based nanofiber membrane. Eng Life Sci. 18:254-262
  • Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C. 2020. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing. Anal Chem. 92:13518–13524
  • Devi M, Das P, Boruah PK, Deka MJ, Duarah R, Gogoi A, Neog D, Dutta HS, Das MR. 2021. Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng. 9:104803
  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2:577–583
  • Hanefeld U, Cao L, Magner E. 2013. Enzyme immobilisation: fundamentals and application. Chem Soc Rev. 42:6211–6212
  • Hong SJ, Chun H, Hong M, Han B. 2022. N- and B-doped fullerene as peroxidase- and catalase-like metal-free nanozymes with pH-switchable catalytic activity: A first-principles approach. Appl Surf Sci. 598:153715
  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. 2019. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 48:3683–3704
  • Liang M, Yan X. 2019. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc Chem Res. 52:2190–2200
  • Lin S, Zhang Y, Cao W, Wang X, Qin L, Zhou M, Wei H. 2019. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalt Trans. 48: 1993–1999
  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. 2022. Nanozymes-recent development and biomedical applications. J Nanobiotechnology. 20:92
  • Robert A, Meunier B. 2022. How to Define a Nanozyme. ACS Nano. 16:6956–6959
  • Song Y, Qu K, Zhao C, Ren J, Qu X. 2010. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv Mater. 22:2206–2210
  • Sun H, Zhou Y, Ren J, Qu X. 2018. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew Chemie Int Ed. 57:9224–9237
  • Wang D, Song X, Li P, Gao XJ, Gao X. 2020. Origins of the peroxidase mimicking activities of graphene oxide from first principles. J Mater Chem B. 8:9028–9034
  • Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, Qiu H, Liu Z, Ren J, Qu X. 2018. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Lett. 18:3344–3351
  • Wang Q, Liu S, Tang Z. 2021. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B. 9:8174–8184
  • Wang Q, Wei H, Zhang Z, Wang E, Dong S. 2018. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 105:218–224
  • Wang X, Hu Y, Wei H. 2016. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 3:41–60
  • Wang X, Wang H, Zhou S. 2021. Progress and Perspective on Carbon-Based Nanozymes for Peroxidase-like Applications. J Phys Chem Lett. 12:11751–11760
  • Wu W, Huang L, Wang E, Dong S. 2020. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci. 11:9741–9756
  • Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. 2021. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coord Chem Rev. 448:214170
  • Zhao J, Gong J, Wei J, Yang Q, Li G, Tong Y, He W. 2022. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. J Colloid Interface Sci. 618:11–21

Peroxidase Mimicking Activity of Macroporous Carbon

Yıl 2023, Cilt: 6 Sayı: 2, 77 - 80, 30.12.2023
https://doi.org/10.46239/ejbcs.1215182

Öz

In this study, the peroxidase-like activity of macroporous carbon manufactured using a silica template was investigated. The nanozyme activity of macroporous carbon was compared to commercial graphene oxide. The field emission scanning electron microscopy image of carbon revealed macroporous morphology. The nanozyme activity was studied via the catalytic oxidation of chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide and the oxidized form of ABTS with a green color can be visualized by the eyes. Without functionalization and enzyme utilization, the fabricated macroporous carbon demonstrated green color development, indicating its peroxidase activity probably due to the large surface area and, thus, abundant active sites present on the surface. The oxygen-containing functional groups formed during carbonization act as active sites and can play a pivotal role in the peroxidase-mimicking activity.

Kaynakça

  • Çakıroğlu B, Çiğil-Beyler A, Ogan A, Kahraman MV, Demir S. 2018. Covalent immobilization of acetylcholinesterase on a novel polyacrylic acid-based nanofiber membrane. Eng Life Sci. 18:254-262
  • Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C. 2020. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing. Anal Chem. 92:13518–13524
  • Devi M, Das P, Boruah PK, Deka MJ, Duarah R, Gogoi A, Neog D, Dutta HS, Das MR. 2021. Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng. 9:104803
  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2:577–583
  • Hanefeld U, Cao L, Magner E. 2013. Enzyme immobilisation: fundamentals and application. Chem Soc Rev. 42:6211–6212
  • Hong SJ, Chun H, Hong M, Han B. 2022. N- and B-doped fullerene as peroxidase- and catalase-like metal-free nanozymes with pH-switchable catalytic activity: A first-principles approach. Appl Surf Sci. 598:153715
  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. 2019. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 48:3683–3704
  • Liang M, Yan X. 2019. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc Chem Res. 52:2190–2200
  • Lin S, Zhang Y, Cao W, Wang X, Qin L, Zhou M, Wei H. 2019. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalt Trans. 48: 1993–1999
  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. 2022. Nanozymes-recent development and biomedical applications. J Nanobiotechnology. 20:92
  • Robert A, Meunier B. 2022. How to Define a Nanozyme. ACS Nano. 16:6956–6959
  • Song Y, Qu K, Zhao C, Ren J, Qu X. 2010. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv Mater. 22:2206–2210
  • Sun H, Zhou Y, Ren J, Qu X. 2018. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew Chemie Int Ed. 57:9224–9237
  • Wang D, Song X, Li P, Gao XJ, Gao X. 2020. Origins of the peroxidase mimicking activities of graphene oxide from first principles. J Mater Chem B. 8:9028–9034
  • Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, Qiu H, Liu Z, Ren J, Qu X. 2018. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Lett. 18:3344–3351
  • Wang Q, Liu S, Tang Z. 2021. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B. 9:8174–8184
  • Wang Q, Wei H, Zhang Z, Wang E, Dong S. 2018. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 105:218–224
  • Wang X, Hu Y, Wei H. 2016. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 3:41–60
  • Wang X, Wang H, Zhou S. 2021. Progress and Perspective on Carbon-Based Nanozymes for Peroxidase-like Applications. J Phys Chem Lett. 12:11751–11760
  • Wu W, Huang L, Wang E, Dong S. 2020. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci. 11:9741–9756
  • Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. 2021. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coord Chem Rev. 448:214170
  • Zhao J, Gong J, Wei J, Yang Q, Li G, Tong Y, He W. 2022. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. J Colloid Interface Sci. 618:11–21
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Bekir Çakıroğlu

Yayımlanma Tarihi 30 Aralık 2023
Kabul Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Çakıroğlu, B. (2023). Peroxidase Mimicking Activity of Macroporous Carbon. Eurasian Journal of Biological and Chemical Sciences, 6(2), 77-80. https://doi.org/10.46239/ejbcs.1215182
AMA Çakıroğlu B. Peroxidase Mimicking Activity of Macroporous Carbon. Eurasian J. Bio. Chem. Sci. Aralık 2023;6(2):77-80. doi:10.46239/ejbcs.1215182
Chicago Çakıroğlu, Bekir. “Peroxidase Mimicking Activity of Macroporous Carbon”. Eurasian Journal of Biological and Chemical Sciences 6, sy. 2 (Aralık 2023): 77-80. https://doi.org/10.46239/ejbcs.1215182.
EndNote Çakıroğlu B (01 Aralık 2023) Peroxidase Mimicking Activity of Macroporous Carbon. Eurasian Journal of Biological and Chemical Sciences 6 2 77–80.
IEEE B. Çakıroğlu, “Peroxidase Mimicking Activity of Macroporous Carbon”, Eurasian J. Bio. Chem. Sci., c. 6, sy. 2, ss. 77–80, 2023, doi: 10.46239/ejbcs.1215182.
ISNAD Çakıroğlu, Bekir. “Peroxidase Mimicking Activity of Macroporous Carbon”. Eurasian Journal of Biological and Chemical Sciences 6/2 (Aralık 2023), 77-80. https://doi.org/10.46239/ejbcs.1215182.
JAMA Çakıroğlu B. Peroxidase Mimicking Activity of Macroporous Carbon. Eurasian J. Bio. Chem. Sci. 2023;6:77–80.
MLA Çakıroğlu, Bekir. “Peroxidase Mimicking Activity of Macroporous Carbon”. Eurasian Journal of Biological and Chemical Sciences, c. 6, sy. 2, 2023, ss. 77-80, doi:10.46239/ejbcs.1215182.
Vancouver Çakıroğlu B. Peroxidase Mimicking Activity of Macroporous Carbon. Eurasian J. Bio. Chem. Sci. 2023;6(2):77-80.