Araştırma Makalesi
BibTex RIS Kaynak Göster

AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior

Yıl 2025, Cilt: 7 Sayı: 2, 163 - 184, 30.09.2025
https://doi.org/10.47778/ejsse.1735558

Öz

This research aimed to contribute to the literature by targeting consumers with real chatbot experiences in purchasing sports products and services, addressing the cognitive and emotional processes that influence consumer decisions within the Stimulus-Organism-Response (S-O-R) framework. The proposed model was grounded in the S-O-R theory and the Information Acceptance Model. It examines the impact of AI-generated information (e.g., quality, credibility, usefulness, and adoption) and utilitarian features (e.g., convenience, choice, information accessibility) on psychological ownership, ease of use, trust in AI, and purchase intention. Datas were collected from 552 consumers with chatbot experience. the findings showed that the perceived value of chatbot-generated information and utilitarian features significantly affect users’ psychological ownership and ease of use. These internal responses, in turn, significantly influence trust in AI and purchase intentions. Structural equation modelling validated the mediating roles of psychological ownership and ease of use. Additionally, perceived intelligence of AI moderated the strength of these relationships, with higher intelligence perceptions weakening emotional and intuitive connections. The study provides practical guidance for brands on how to design chatbot systems that enhance user control, foster emotional engagement, and increase purchase intentions. Customization, intuitive interfaces, and demographic-based strategies are recommended. This is one of the first studies to integrate S-O-R and Information Acceptance Models to explore AI-powered chatbot influence in sports e-commerce, revealing unique psychological mechanisms and moderation effects in consumer decision-making.

Kaynakça

  • Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90. https://doi.org/10.1016/j.chb.2016.05.014
  • Akoğlu, H. E., Yildiz, K., & Kumar, S. (2024). Why do athletes consume luxury brands? A study on motivations and values from the lens of theory of prestige consumption. Marketing Intelligence & Planning, 42(5), 871-889. https://doi.org/10.1108/MIP-10-2023-0577
  • Arachchi, H. D. M., & Samarasinghe, G. (2023). Impulse purchase intention in an AI-mediated retail environment: Extending the TAM with attitudes towards technology and innovativeness. Global Business Review, 09721509231197721. https://doi.org/10.1177/09721509231197721
  • Armutcu, B., Tan, A., Ho, S. P. S., Chow, M. Y. C., & Gleason, K. C. (2024). The effect of bank artificial intelligence on consumer purchase intentions. Kybernetes. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/K-01-2024-0145
  • Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644-656. https://doi.org/10.1086/209376
  • Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3
  • Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. foresight, 25(2), 249-263. https://doi.org/10.1108/FS-10-2021-0218
  • Biswas, M. I., Talukder, M. S., & Chen, Y. (2025). Applying the stimulus-organism-behavior-consequence framework to examine the relationship between intention, usage and recommendation of ChatGPT in higher education. International Journal of Educational Management, 39(2), 450-468. https://doi.org/10.1108/IJEM-09-2023-0463
  • Chan, S. H. G., Tang, B. M., Lin, Z., & Gao, K. Y. C. (2024). Micro-celebrity marketing-induced travels: a psychological ownership perspective. Tourism Review, 80(6), 1242-1260. https://doi.org/10.1108/TR-05-2024-0377
  • Cheng, L. K. (2022). The effects of smartphone assistants' anthropomorphism on consumers' psychological ownership and perceived competence of smartphone assistants. Journal of Consumer Behaviour, 21(2), 427-442. https://doi.org/10.1002/cb.2021
  • Cheng, X., Bao, Y., Zarifis, A., Gong, W., & Mou, J. (2021). Exploring consumers' response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure. Internet Research, 32(2), 496-517. https://doi.org/10.1108/INTR-08-2020-0460
  • Cheng, X., Fu, S., & de Vreede, G.-J. (2017). Understanding trust influencing factors in social media communication: A qualitative study. International Journal of Information Management, 37(2), 25-35. https://doi.org/10.1016/j.ijinfomgt.2016.11.009
  • Choung, H., David, P., & Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(9), 1727-1739. https://doi.org/10.1080/10447318.2022.2050543
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.
  • D’Souza, C., Apaolaza, V., Hartmann, P., & Nguyen, N. (2023). The consequence of possessions: Self-identity, extended self, psychological ownership and probabilities of purchase for pet’s fashion clothing. Journal of Retailing and Consumer Services, 75, 103501. https://doi.org/10.1016/j.jretconser.2023.103501
  • Dahri, N. A., Yahaya, N., Vighio, M. S., & Jumaat, N. F. (2025). Exploring the impact of ChatGPT on teaching performance: findings from SOR theory, SEM and IPMA analysis approach. Education and Information Technologies, 1-36. https://doi.org/10.1007/s10639-025-13539-z
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
  • Elayat, A. M. A., & Elalfy, R. M. (2025). Using SOR theory to examine the impact of AI Chatbot quality on Gen Z’s satisfaction and advocacy within the fast-food sector. Young Consumers, 26(2), 352-383. https://doi.org/10.1108/YC-08-2024-2199
  • ElSayad, G., & Mamdouh, H. (2024). Are young adult consumers ready to be intelligent shoppers? The importance of perceived trust and the usefulness of AI-powered retail platforms in shaping purchase intention. Young Consumers, 25(6), 969-989. https://doi.org/10.1108/YC-02-2024-1991
  • Erkan, I., & Evans, C. (2018). Social media or shopping websites? The influence of eWOM on consumers’ online purchase intentions. Journal of marketing communications, 24(6), 617-632. https://doi.org/10.1080/13527266.2016.1184706
  • Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2003). Empirical testing of a model of online store atmospherics and shopper responses. Psychology & marketing, 20(2), 139-150. https://doi.org/10.1002/mar.10064
  • Filipović, J., & Šapić, S. (2025). Artiffical intelligence elements as antecendents of social media consumer engagement and purchase intention. International Communication of Chinese Culture, 1-22. https://doi.org/10.1007/s40636-025-00324-3
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.2307/3151312
  • Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737. https://doi.org/10.1016/S0305-0483(00)00021-9
  • Gefen, D., & Straub, D. W. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the association for Information Systems, 1(1), 8. https://doi.org/10.17705/1jais.00008
  • Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107. https://doi.org/10.2307/2334290
  • George, D., & Mallery, P. (2024). IBM SPSS statistics 29 step by step: A simple guide and reference. Routledge.
  • Grazioli, S., & Jarvenpaa, S. L. (2000). Perils of Internet fraud: An empirical investigation of deception and trust with experienced Internet consumers. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(4), 395-410. https://doi.org/10.1109/3468.852434
  • Guo, A., Pataranutaporn, P., & Maes, P. (2024). Exploring the impact of AI value alignment in collaborative ideation: Effects on perception, ownership, and output. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, https://doi.org/10.48550/arXiv.2402.12814
  • Guo, L., Burke, M. G., & Griggs, W. M. (2025). Exploring human-SAV interaction using large language models: The impact of psychological ownership and anthropomorphism on user experience. arXiv preprint arXiv:2504.16548. https://doi.org/10.48550/arXiv.2504.16548
  • Hair, J. F., Hult, G. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structuralequation modeling. Sage Publicaitons.
  • Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  • Han, M. S., Hampson, D. P., Wang, Y., & Wang, H. (2022). Consumer confidence and green purchase intention: An application of the stimulus-organism-response model. Journal of Retailing and Consumer Services, 68, 103061. https://doi.org/10.1016/j.jretconser.2022.103061
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Hu, X., Xu, X., & Chen, C. (2025). Empowering consumers: the role of avatar choice in consumer-chatbot interaction and psychological ownership. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2025.2495845
  • Jacoby, J. (2002). Stimulus‐organism‐response reconsidered: an evolutionary step in modeling (consumer) behavior. Journal of consumer psychology, 12(1), 51-57. https://doi.org/10.1207/S15327663JCP1201_05
  • Jin, S. V., & Youn, S. (2023). Social presence and imagery processing as predictors of chatbot continuance intention in human-AI-interaction. International Journal of Human–Computer Interaction, 39(9), 1874-1886. https://doi.org/10.1080/10447318.2022.2129277
  • Kang, W., Shao, B., & Zhang, Y. (2024). How does interactivity shape users’ continuance intention of intelligent voice assistants? evidence from sem and fsQCA. Psychology Research and Behavior Management, 17, 867-889. https://doi.org/10.2147/PRBM.S438465
  • Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. https://doi.org/10.1016/j.techsoc.2020.101280
  • Kim, J., Giroux, M., & Lee, J. C. (2021). When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychology & marketing, 38(7), 1140-1155. https://doi.org/10.1002/mar.21498
  • Kim, M., & Kim, J. (2024). Artificial intelligence in voice assistants: User benefits explored. International Journal of Consumer Studies, 48(2), e13019. https://doi.org/10.1111/ijcs.13019
  • Kim, T., & Song, H. (2023). Communicating the limitations of AI: the effect of message framing and ownership on trust in artificial intelligence. International Journal of Human–Computer Interaction, 39(4), 790-800. https://doi.org/10.1080/10447318.2022.2049134
  • Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1-10. https://doi.org/10.4018/ijec.2015100101
  • Krishnan, C., Gupta, A., Gupta, A., & Singh, G. (2022). Impact of artificial intelligence-based chatbots on customer engagement and business growth. In Deep learning for social media data analytics (pp. 195-210). Springer. https://doi.org/10.1007/978-3-031-10869-3_11
  • Kumar, S., & Hsieh, J.-K. (2024). How social media marketing activities affect brand loyalty? Mediating role of brand experience. Asia Pacific Journal of Marketing and Logistics, 36(10), 2300-2323. https://doi.org/10.1108/APJML-09-2023-0900
  • Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press. https://doi.org/10.2307/2075902
  • Le, X. C. (2023). Inducing AI-powered chatbot use for customer purchase: the role of information value and innovative technology. Journal of Systems and Information Technology, 25(2), 219-241. https://doi.org/10.1108/JSIT-09-2021-0206
  • Li, C.-Y., Fang, Y.-H., & Chiang, Y.-H. (2023). Can AI chatbots help retain customers? An integrative perspective using affordance theory and service-domain logic. Technological Forecasting and Social Change, 197, 122921. https://doi.org/10.1016/j.techfore.2023.122921
  • Lopes, J. M., Silva, L. F., & Massano-Cardoso, I. (2024). AI meets the shopper: psychosocial factors in ease of use and their effect on E-Commerce purchase intention. Behavioral Sciences, 14(7), 616. https://doi.org/10.3390/bs14070616
  • Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192
  • Malhotra, G., Jham, V., & Sehgal, N. (2022). Does psychological ownership matter? Investigating consumer green brand relationships through the lens of anthropomorphism. Sustainability, 14(20), 13152. https://doi.org/10.3390/su142013152
  • Malhotra, G., & Ramalingam, M. (2025). Perceived anthropomorphism and purchase intention using artificial intelligence technology: examining the moderated effect of trust. Journal of Enterprise Information Management, 38(2), 401-423. https://doi.org/10.1108/JEIM-09-2022-0316
  • Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press.
  • Mohammadi, S., Pashaie, S., Ghaffarisadr, S. I., & Rayner, M. (2025). Opportunities and challenges of leveraging artificial intelligence (ai) in sport marketing. Advancing the Marketing Technology (MarTech) Revolution, 233-272. https://doi.org/10.4018/979-8-3693-4361-6
  • Morewedge, C. K. (2021). Psychological ownership: Implicit and explicit. Current Opinion in Psychology, 39, 125-132. https://doi.org/10.1016/j.copsyc.2020.10.003
  • Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European journal of marketing, 56(6), 1748-1771. https://doi.org/10.1108/EJM-02-2020-0084
  • Panda, S., & Kaur, N. (2023). Exploring the viability of ChatGPT as an alternative to traditional chatbot systems in library and information centers. Library hi tech news, 40(3), 22-25. https://doi.org/10.1108/LHTN-02-2023-0032
  • Pham, A. D., Dao, T. T., Pham, P. M., Pham, Y. H., Nguyen, H. T., & Pham, L. N. (2024). How does conformity shape influencer marketing in the food and beverage industry? A case study in Vietnam. Journal of Internet Commerce, 23(2), 172-203. https://doi.org/10.1080/15332861.2024.2338699
  • Pick, M. (2021). Psychological ownership in social media influencer marketing. European business review, 33(1), 9-30. https://doi.org/10.1108/EBR-08-2019-0165
  • Pierce, J. L., Kostova, T., & Dirks, K. T. (2003). The state of psychological ownership: Integrating and extending a century of research. Review of general psychology, 7(1), 84-107. https://doi.org/10.1037/1089-2680.7.1.84
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
  • Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual review of psychology, 63(1), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891. https://doi.org/10.3758/BRM.40.3.879
  • Qu, Z., Cao, X., Ge, H., & Liu, Y. (2021). How does national image affect tourists’ civilized tourism behavior? The mediating role of psychological ownership. Journal of Hospitality and Tourism Management, 47, 468-475. https://doi.org/10.1016/j.jhtm.2021.04.019
  • Sarkar, S., Chauhan, S., & Khare, A. (2020). A meta-analysis of antecedents and consequences of trust in mobile commerce. International Journal of Information Management, 50, 286-301. https://doi.org/10.1016/j.ijinfomgt.2019.08.008
  • Sboui, M., Baati, O., & Sfar, N. (2024). Influencing factors and consequences of chatbot initial trust in AI telecommunication services: a study on Generation Z. The TQM Journal. https://doi.org/10.1108/TQM-02-2024-0085
  • Scarpi, D. (2024). Strangers or friends? Examining chatbot adoption in tourism through psychological ownership. Tourism management, 102, 104873. https://doi.org/10.1016/j.tourman.2023.104873
  • Sehgal, N., Jham, V., & Malhotra, G. (2023). Does green brand anthropomorphism influence repurchase intention? Understanding the impact of brand warmth, psychological ownership, and self-brand congruity. Journal of Retailing and Consumer Services, 75, 103546. https://doi.org/10.1016/j.jretconser.2023.103546
  • Shan, Y., & Li, R. Y. M. (2025). The impact of AI recommendation’s price and product accuracy on customer satisfaction: SEM-SOR theoretical approach. Current Psychology, 44(8), 6978-6988. https://doi.org/10.1007/s12144-025-07456-0
  • Shin, E., & Yang, H. (2025). Effect of Chinese consumer characteristics on the attitude of AI-curated fashion service and the purchase intention of fashion products. Journal of Fashion Marketing and Management: An International Journal, 29(1), 20-37. https://doi.org/10.1108/JFMM-08-2023-0186
  • Stone, M. (1974). Cross‐validatory choice and assessment of statistical predictions. Journal of the royal statistical society: Series B (Methodological), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
  • To, P.-L., Liao, C., & Lin, T.-H. (2007). Shopping motivations on Internet: A study based on utilitarian and hedonic value. Technovation, 27(12), 774-787. https://doi.org/10.1016/j.technovation.2007.01.001
  • Tseng, T.-L., & Wu, C.-C. (2024). Application of the information adoption model and technology acceptance model in electronic word-of-mouth. International Journal of Performance Measurement, 14(1), 1-33.
  • Vafaei-Zadeh, A., Nikbin, D., Wong, S. L., & Hanifah, H. (2024). Investigating factors influencing AI customer service adoption: an integrated model of stimulus–organism–response (SOR) and task-technology fit (TTF) theory. Asia Pacific Journal of Marketing and Logistics, 37(6), 1465-1502. https://doi.org/10.1108/APJML-05-2024-0570
  • Vieira, V. A., Rafael, D. N., & Agnihotri, R. (2022). Augmented reality generalizations: A meta-analytical review on consumer-related outcomes and the mediating role of hedonic and utilitarian values. Journal of business research, 151, 170-184. https://doi.org/10.1016/j.jbusres.2022.06.030
  • Wahab, H. K. A., Tao, M., Tandon, A., Ashfaq, M., & Dhir, A. (2022). Social media celebrities and new world order. What drives purchasing behavior among social media followers? Journal of Retailing and Consumer Services, 68, 103076. https://doi.org/10.1016/j.jretconser.2022.103076
  • Xu, H., Law, R., Lovett, J., Luo, J. M., & Liu, L. (2024). Tourist acceptance of ChatGPT in travel services: the mediating role of parasocial interaction. Journal of Travel & Tourism Marketing, 41(7), 955-972. https://doi.org/10.1080/10548408.2024.2364336
  • Xu, Y., Cheng, M., & Kuzminykh, A. (2024). What makes it mine? exploring psychological ownership over human-AI co-creations. Proceedings of the 50th Graphics Interface Conference, https://doi.org/10.1145/3670947.36709
  • Zhang, L., Anjum, M. A., & Wang, Y. (2024). The impact of trust-building mechanisms on purchase intention towards metaverse shopping: the moderating role of age. International Journal of Human–Computer Interaction, 40(12), 3185-3203. https://doi.org/10.1080/10447318.2023.2184594
  • Zhang, X., Chen, H., & Ma, Y. (2025). When you feel you own ai assistants: how consumer ownership enhances consumers' adoption intention. Journal of Consumer Behaviour, 24(4), 2033-2053. https://doi.org/10.1002/cb.2491
  • Zhao, X., Lynch Jr, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of consumer research, 37(2), 197-206. https://doi.org/10.1086/651257
  • Zhou, S., Li, T., Yang, S., & Chen, Y. (2022). What drives consumers’ purchase intention of online paid knowledge? A stimulus-organism-response perspective. Electronic Commerce Research and Applications, 52, 101126. https://doi.org/10.1016/j.elerap.2022.101126
  • Zhu, L., Li, H., Wang, F.-K., He, W., & Tian, Z. (2020). How online reviews affect purchase intention: a new model based on the stimulus-organism-response (S-O-R) framework. Aslib Journal of Information Management, 72(4), 463-488. https://doi.org/10.1108/AJIM-11-2019-0308
  • Zhu, Y., Zhang, R., Zou, Y., & Jin, D. (2023). Investigating customers’ responses to artificial intelligence chatbots in online travel agencies: the moderating role of product familiarity. Journal of Hospitality and Tourism Technology, 14(2), 208-224. https://doi.org/10.1108/JHTT-02-2022-0041

Yıl 2025, Cilt: 7 Sayı: 2, 163 - 184, 30.09.2025
https://doi.org/10.47778/ejsse.1735558

Öz

Kaynakça

  • Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90. https://doi.org/10.1016/j.chb.2016.05.014
  • Akoğlu, H. E., Yildiz, K., & Kumar, S. (2024). Why do athletes consume luxury brands? A study on motivations and values from the lens of theory of prestige consumption. Marketing Intelligence & Planning, 42(5), 871-889. https://doi.org/10.1108/MIP-10-2023-0577
  • Arachchi, H. D. M., & Samarasinghe, G. (2023). Impulse purchase intention in an AI-mediated retail environment: Extending the TAM with attitudes towards technology and innovativeness. Global Business Review, 09721509231197721. https://doi.org/10.1177/09721509231197721
  • Armutcu, B., Tan, A., Ho, S. P. S., Chow, M. Y. C., & Gleason, K. C. (2024). The effect of bank artificial intelligence on consumer purchase intentions. Kybernetes. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/K-01-2024-0145
  • Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644-656. https://doi.org/10.1086/209376
  • Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3
  • Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. foresight, 25(2), 249-263. https://doi.org/10.1108/FS-10-2021-0218
  • Biswas, M. I., Talukder, M. S., & Chen, Y. (2025). Applying the stimulus-organism-behavior-consequence framework to examine the relationship between intention, usage and recommendation of ChatGPT in higher education. International Journal of Educational Management, 39(2), 450-468. https://doi.org/10.1108/IJEM-09-2023-0463
  • Chan, S. H. G., Tang, B. M., Lin, Z., & Gao, K. Y. C. (2024). Micro-celebrity marketing-induced travels: a psychological ownership perspective. Tourism Review, 80(6), 1242-1260. https://doi.org/10.1108/TR-05-2024-0377
  • Cheng, L. K. (2022). The effects of smartphone assistants' anthropomorphism on consumers' psychological ownership and perceived competence of smartphone assistants. Journal of Consumer Behaviour, 21(2), 427-442. https://doi.org/10.1002/cb.2021
  • Cheng, X., Bao, Y., Zarifis, A., Gong, W., & Mou, J. (2021). Exploring consumers' response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure. Internet Research, 32(2), 496-517. https://doi.org/10.1108/INTR-08-2020-0460
  • Cheng, X., Fu, S., & de Vreede, G.-J. (2017). Understanding trust influencing factors in social media communication: A qualitative study. International Journal of Information Management, 37(2), 25-35. https://doi.org/10.1016/j.ijinfomgt.2016.11.009
  • Choung, H., David, P., & Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(9), 1727-1739. https://doi.org/10.1080/10447318.2022.2050543
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.
  • D’Souza, C., Apaolaza, V., Hartmann, P., & Nguyen, N. (2023). The consequence of possessions: Self-identity, extended self, psychological ownership and probabilities of purchase for pet’s fashion clothing. Journal of Retailing and Consumer Services, 75, 103501. https://doi.org/10.1016/j.jretconser.2023.103501
  • Dahri, N. A., Yahaya, N., Vighio, M. S., & Jumaat, N. F. (2025). Exploring the impact of ChatGPT on teaching performance: findings from SOR theory, SEM and IPMA analysis approach. Education and Information Technologies, 1-36. https://doi.org/10.1007/s10639-025-13539-z
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
  • Elayat, A. M. A., & Elalfy, R. M. (2025). Using SOR theory to examine the impact of AI Chatbot quality on Gen Z’s satisfaction and advocacy within the fast-food sector. Young Consumers, 26(2), 352-383. https://doi.org/10.1108/YC-08-2024-2199
  • ElSayad, G., & Mamdouh, H. (2024). Are young adult consumers ready to be intelligent shoppers? The importance of perceived trust and the usefulness of AI-powered retail platforms in shaping purchase intention. Young Consumers, 25(6), 969-989. https://doi.org/10.1108/YC-02-2024-1991
  • Erkan, I., & Evans, C. (2018). Social media or shopping websites? The influence of eWOM on consumers’ online purchase intentions. Journal of marketing communications, 24(6), 617-632. https://doi.org/10.1080/13527266.2016.1184706
  • Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2003). Empirical testing of a model of online store atmospherics and shopper responses. Psychology & marketing, 20(2), 139-150. https://doi.org/10.1002/mar.10064
  • Filipović, J., & Šapić, S. (2025). Artiffical intelligence elements as antecendents of social media consumer engagement and purchase intention. International Communication of Chinese Culture, 1-22. https://doi.org/10.1007/s40636-025-00324-3
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.2307/3151312
  • Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737. https://doi.org/10.1016/S0305-0483(00)00021-9
  • Gefen, D., & Straub, D. W. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the association for Information Systems, 1(1), 8. https://doi.org/10.17705/1jais.00008
  • Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107. https://doi.org/10.2307/2334290
  • George, D., & Mallery, P. (2024). IBM SPSS statistics 29 step by step: A simple guide and reference. Routledge.
  • Grazioli, S., & Jarvenpaa, S. L. (2000). Perils of Internet fraud: An empirical investigation of deception and trust with experienced Internet consumers. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(4), 395-410. https://doi.org/10.1109/3468.852434
  • Guo, A., Pataranutaporn, P., & Maes, P. (2024). Exploring the impact of AI value alignment in collaborative ideation: Effects on perception, ownership, and output. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, https://doi.org/10.48550/arXiv.2402.12814
  • Guo, L., Burke, M. G., & Griggs, W. M. (2025). Exploring human-SAV interaction using large language models: The impact of psychological ownership and anthropomorphism on user experience. arXiv preprint arXiv:2504.16548. https://doi.org/10.48550/arXiv.2504.16548
  • Hair, J. F., Hult, G. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structuralequation modeling. Sage Publicaitons.
  • Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  • Han, M. S., Hampson, D. P., Wang, Y., & Wang, H. (2022). Consumer confidence and green purchase intention: An application of the stimulus-organism-response model. Journal of Retailing and Consumer Services, 68, 103061. https://doi.org/10.1016/j.jretconser.2022.103061
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Hu, X., Xu, X., & Chen, C. (2025). Empowering consumers: the role of avatar choice in consumer-chatbot interaction and psychological ownership. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2025.2495845
  • Jacoby, J. (2002). Stimulus‐organism‐response reconsidered: an evolutionary step in modeling (consumer) behavior. Journal of consumer psychology, 12(1), 51-57. https://doi.org/10.1207/S15327663JCP1201_05
  • Jin, S. V., & Youn, S. (2023). Social presence and imagery processing as predictors of chatbot continuance intention in human-AI-interaction. International Journal of Human–Computer Interaction, 39(9), 1874-1886. https://doi.org/10.1080/10447318.2022.2129277
  • Kang, W., Shao, B., & Zhang, Y. (2024). How does interactivity shape users’ continuance intention of intelligent voice assistants? evidence from sem and fsQCA. Psychology Research and Behavior Management, 17, 867-889. https://doi.org/10.2147/PRBM.S438465
  • Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. https://doi.org/10.1016/j.techsoc.2020.101280
  • Kim, J., Giroux, M., & Lee, J. C. (2021). When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychology & marketing, 38(7), 1140-1155. https://doi.org/10.1002/mar.21498
  • Kim, M., & Kim, J. (2024). Artificial intelligence in voice assistants: User benefits explored. International Journal of Consumer Studies, 48(2), e13019. https://doi.org/10.1111/ijcs.13019
  • Kim, T., & Song, H. (2023). Communicating the limitations of AI: the effect of message framing and ownership on trust in artificial intelligence. International Journal of Human–Computer Interaction, 39(4), 790-800. https://doi.org/10.1080/10447318.2022.2049134
  • Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1-10. https://doi.org/10.4018/ijec.2015100101
  • Krishnan, C., Gupta, A., Gupta, A., & Singh, G. (2022). Impact of artificial intelligence-based chatbots on customer engagement and business growth. In Deep learning for social media data analytics (pp. 195-210). Springer. https://doi.org/10.1007/978-3-031-10869-3_11
  • Kumar, S., & Hsieh, J.-K. (2024). How social media marketing activities affect brand loyalty? Mediating role of brand experience. Asia Pacific Journal of Marketing and Logistics, 36(10), 2300-2323. https://doi.org/10.1108/APJML-09-2023-0900
  • Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press. https://doi.org/10.2307/2075902
  • Le, X. C. (2023). Inducing AI-powered chatbot use for customer purchase: the role of information value and innovative technology. Journal of Systems and Information Technology, 25(2), 219-241. https://doi.org/10.1108/JSIT-09-2021-0206
  • Li, C.-Y., Fang, Y.-H., & Chiang, Y.-H. (2023). Can AI chatbots help retain customers? An integrative perspective using affordance theory and service-domain logic. Technological Forecasting and Social Change, 197, 122921. https://doi.org/10.1016/j.techfore.2023.122921
  • Lopes, J. M., Silva, L. F., & Massano-Cardoso, I. (2024). AI meets the shopper: psychosocial factors in ease of use and their effect on E-Commerce purchase intention. Behavioral Sciences, 14(7), 616. https://doi.org/10.3390/bs14070616
  • Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192
  • Malhotra, G., Jham, V., & Sehgal, N. (2022). Does psychological ownership matter? Investigating consumer green brand relationships through the lens of anthropomorphism. Sustainability, 14(20), 13152. https://doi.org/10.3390/su142013152
  • Malhotra, G., & Ramalingam, M. (2025). Perceived anthropomorphism and purchase intention using artificial intelligence technology: examining the moderated effect of trust. Journal of Enterprise Information Management, 38(2), 401-423. https://doi.org/10.1108/JEIM-09-2022-0316
  • Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press.
  • Mohammadi, S., Pashaie, S., Ghaffarisadr, S. I., & Rayner, M. (2025). Opportunities and challenges of leveraging artificial intelligence (ai) in sport marketing. Advancing the Marketing Technology (MarTech) Revolution, 233-272. https://doi.org/10.4018/979-8-3693-4361-6
  • Morewedge, C. K. (2021). Psychological ownership: Implicit and explicit. Current Opinion in Psychology, 39, 125-132. https://doi.org/10.1016/j.copsyc.2020.10.003
  • Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European journal of marketing, 56(6), 1748-1771. https://doi.org/10.1108/EJM-02-2020-0084
  • Panda, S., & Kaur, N. (2023). Exploring the viability of ChatGPT as an alternative to traditional chatbot systems in library and information centers. Library hi tech news, 40(3), 22-25. https://doi.org/10.1108/LHTN-02-2023-0032
  • Pham, A. D., Dao, T. T., Pham, P. M., Pham, Y. H., Nguyen, H. T., & Pham, L. N. (2024). How does conformity shape influencer marketing in the food and beverage industry? A case study in Vietnam. Journal of Internet Commerce, 23(2), 172-203. https://doi.org/10.1080/15332861.2024.2338699
  • Pick, M. (2021). Psychological ownership in social media influencer marketing. European business review, 33(1), 9-30. https://doi.org/10.1108/EBR-08-2019-0165
  • Pierce, J. L., Kostova, T., & Dirks, K. T. (2003). The state of psychological ownership: Integrating and extending a century of research. Review of general psychology, 7(1), 84-107. https://doi.org/10.1037/1089-2680.7.1.84
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
  • Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual review of psychology, 63(1), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891. https://doi.org/10.3758/BRM.40.3.879
  • Qu, Z., Cao, X., Ge, H., & Liu, Y. (2021). How does national image affect tourists’ civilized tourism behavior? The mediating role of psychological ownership. Journal of Hospitality and Tourism Management, 47, 468-475. https://doi.org/10.1016/j.jhtm.2021.04.019
  • Sarkar, S., Chauhan, S., & Khare, A. (2020). A meta-analysis of antecedents and consequences of trust in mobile commerce. International Journal of Information Management, 50, 286-301. https://doi.org/10.1016/j.ijinfomgt.2019.08.008
  • Sboui, M., Baati, O., & Sfar, N. (2024). Influencing factors and consequences of chatbot initial trust in AI telecommunication services: a study on Generation Z. The TQM Journal. https://doi.org/10.1108/TQM-02-2024-0085
  • Scarpi, D. (2024). Strangers or friends? Examining chatbot adoption in tourism through psychological ownership. Tourism management, 102, 104873. https://doi.org/10.1016/j.tourman.2023.104873
  • Sehgal, N., Jham, V., & Malhotra, G. (2023). Does green brand anthropomorphism influence repurchase intention? Understanding the impact of brand warmth, psychological ownership, and self-brand congruity. Journal of Retailing and Consumer Services, 75, 103546. https://doi.org/10.1016/j.jretconser.2023.103546
  • Shan, Y., & Li, R. Y. M. (2025). The impact of AI recommendation’s price and product accuracy on customer satisfaction: SEM-SOR theoretical approach. Current Psychology, 44(8), 6978-6988. https://doi.org/10.1007/s12144-025-07456-0
  • Shin, E., & Yang, H. (2025). Effect of Chinese consumer characteristics on the attitude of AI-curated fashion service and the purchase intention of fashion products. Journal of Fashion Marketing and Management: An International Journal, 29(1), 20-37. https://doi.org/10.1108/JFMM-08-2023-0186
  • Stone, M. (1974). Cross‐validatory choice and assessment of statistical predictions. Journal of the royal statistical society: Series B (Methodological), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
  • To, P.-L., Liao, C., & Lin, T.-H. (2007). Shopping motivations on Internet: A study based on utilitarian and hedonic value. Technovation, 27(12), 774-787. https://doi.org/10.1016/j.technovation.2007.01.001
  • Tseng, T.-L., & Wu, C.-C. (2024). Application of the information adoption model and technology acceptance model in electronic word-of-mouth. International Journal of Performance Measurement, 14(1), 1-33.
  • Vafaei-Zadeh, A., Nikbin, D., Wong, S. L., & Hanifah, H. (2024). Investigating factors influencing AI customer service adoption: an integrated model of stimulus–organism–response (SOR) and task-technology fit (TTF) theory. Asia Pacific Journal of Marketing and Logistics, 37(6), 1465-1502. https://doi.org/10.1108/APJML-05-2024-0570
  • Vieira, V. A., Rafael, D. N., & Agnihotri, R. (2022). Augmented reality generalizations: A meta-analytical review on consumer-related outcomes and the mediating role of hedonic and utilitarian values. Journal of business research, 151, 170-184. https://doi.org/10.1016/j.jbusres.2022.06.030
  • Wahab, H. K. A., Tao, M., Tandon, A., Ashfaq, M., & Dhir, A. (2022). Social media celebrities and new world order. What drives purchasing behavior among social media followers? Journal of Retailing and Consumer Services, 68, 103076. https://doi.org/10.1016/j.jretconser.2022.103076
  • Xu, H., Law, R., Lovett, J., Luo, J. M., & Liu, L. (2024). Tourist acceptance of ChatGPT in travel services: the mediating role of parasocial interaction. Journal of Travel & Tourism Marketing, 41(7), 955-972. https://doi.org/10.1080/10548408.2024.2364336
  • Xu, Y., Cheng, M., & Kuzminykh, A. (2024). What makes it mine? exploring psychological ownership over human-AI co-creations. Proceedings of the 50th Graphics Interface Conference, https://doi.org/10.1145/3670947.36709
  • Zhang, L., Anjum, M. A., & Wang, Y. (2024). The impact of trust-building mechanisms on purchase intention towards metaverse shopping: the moderating role of age. International Journal of Human–Computer Interaction, 40(12), 3185-3203. https://doi.org/10.1080/10447318.2023.2184594
  • Zhang, X., Chen, H., & Ma, Y. (2025). When you feel you own ai assistants: how consumer ownership enhances consumers' adoption intention. Journal of Consumer Behaviour, 24(4), 2033-2053. https://doi.org/10.1002/cb.2491
  • Zhao, X., Lynch Jr, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of consumer research, 37(2), 197-206. https://doi.org/10.1086/651257
  • Zhou, S., Li, T., Yang, S., & Chen, Y. (2022). What drives consumers’ purchase intention of online paid knowledge? A stimulus-organism-response perspective. Electronic Commerce Research and Applications, 52, 101126. https://doi.org/10.1016/j.elerap.2022.101126
  • Zhu, L., Li, H., Wang, F.-K., He, W., & Tian, Z. (2020). How online reviews affect purchase intention: a new model based on the stimulus-organism-response (S-O-R) framework. Aslib Journal of Information Management, 72(4), 463-488. https://doi.org/10.1108/AJIM-11-2019-0308
  • Zhu, Y., Zhang, R., Zou, Y., & Jin, D. (2023). Investigating customers’ responses to artificial intelligence chatbots in online travel agencies: the moderating role of product familiarity. Journal of Hospitality and Tourism Technology, 14(2), 208-224. https://doi.org/10.1108/JHTT-02-2022-0041
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Spor Faaliyetleri Yönetimi
Bölüm Makaleler
Yazarlar

Halil Erdem Akoğlu 0000-0002-0818-7143

Erken Görünüm Tarihi 22 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 5 Temmuz 2025
Kabul Tarihi 2 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Akoğlu, H. E. (2025). AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior. Eurasian Journal of Sport Sciences and Education, 7(2), 163-184. https://doi.org/10.47778/ejsse.1735558
AMA Akoğlu HE. AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior. Eurasian Journal of Sport Sciences and Education. Eylül 2025;7(2):163-184. doi:10.47778/ejsse.1735558
Chicago Akoğlu, Halil Erdem. “AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior”. Eurasian Journal of Sport Sciences and Education 7, sy. 2 (Eylül 2025): 163-84. https://doi.org/10.47778/ejsse.1735558.
EndNote Akoğlu HE (01 Eylül 2025) AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior. Eurasian Journal of Sport Sciences and Education 7 2 163–184.
IEEE H. E. Akoğlu, “AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior”, Eurasian Journal of Sport Sciences and Education, c. 7, sy. 2, ss. 163–184, 2025, doi: 10.47778/ejsse.1735558.
ISNAD Akoğlu, Halil Erdem. “AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior”. Eurasian Journal of Sport Sciences and Education 7/2 (Eylül2025), 163-184. https://doi.org/10.47778/ejsse.1735558.
JAMA Akoğlu HE. AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior. Eurasian Journal of Sport Sciences and Education. 2025;7:163–184.
MLA Akoğlu, Halil Erdem. “AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior”. Eurasian Journal of Sport Sciences and Education, c. 7, sy. 2, 2025, ss. 163-84, doi:10.47778/ejsse.1735558.
Vancouver Akoğlu HE. AI-Powered Chatbots in Sports E-Commerce: A Stimulus-Organism-Response Perspective on Consumer Behavior. Eurasian Journal of Sport Sciences and Education. 2025;7(2):163-84.

28371            18288             18287            18286

indir.png