Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 19 Sayı: 1, 48 - 58, 01.01.2019

Öz

Kaynakça

  • [1]Übeylı, Elif Derya, and Inan Güler. "Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems." Computers in biology and medicine 35.5 (2005): 421-433.
  • [2]H.A. Guvenir, G. Demiro z, N. ̇Ilter, Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals, Artif. Intell. Med. 13 (1998) 147–165.
  • [3]Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
  • [4]Fukunaga, Keinosuke. Introduction to statistical pattern recognition. Academic press, 2013.
  • [5]Griffiths, Christopher EM, and Jonathan NWN Barker. "Pathogenesis and clinical features of psoriasis." The Lancet370.9583 (2007): 263-271.
  • [6]http://emedicine.medscape.com/article/1108072-overview Access date:12.10.2016
  • [7] Oğuz,O., "Atopic Dermatitis, ", Skin Diseases and Wound Care Symposium, I. U. Cerrahpasa Faculty of Medicine CME, İstanbul, p. 57-59., 2001.
  • [8] http://www.florence.com.tr/dermatokozmetoloji/allerjik-deri-hastaliklari/atopik-dermatit.html Access date:12.10.2016
  • [9]Gökbay, I. Z., et al. "An Intelligent Decision Support Tool for Early Diagnosis of Functional Pituitary Adenomas." TWMS Journal of Applied and Engineering Mathematics 5.2 (2015): 169.
  • [10]Twiss, James, et al. "Can we rely on the Dermatology Life Quality Index as a measure of the impact of psoriasis or atopic dermatitis?." Journal of Investigative Dermatology 132.1 (2012): 76-84.
  • [11]Khairina, Dyna Marisa, et al. "Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method." E3S Web of Conferences. Vol. 31. EDP Sciences, 2018.
  • [12]Lee, Eva K. "Machine Learning For Early Detection And Treatment Outcome Prediction." Decision Analytics and Optimization in Disease Prevention and Treatment(2018): 367.

A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis

Yıl 2019, Cilt: 19 Sayı: 1, 48 - 58, 01.01.2019

Öz

DOI: 10.26650/electrica.2018.081118


Prediction models provide the probability of
an event. These models can be used to predict disease’s outcomes, reccurencies
after treatments. This paper presents an expert system called Symptom Based
Clinical Decision Support Tool (SBCDST) for early diagnosis of
erythemato-squamous diseases incorporating decisions made by Bayesian
classification algorithm. This tool enables family practitioners to
differentiate four types of erythemato-squamous diseases using clinical
parameters obtained from a patient. In SBCDST, Psoriasis, Seborrheic
Dermatitis, Rosacea and Chronic dermatitis diseases are described by means of
well-classified set of attributes. Attributes are generated from the typical
sign and symptoms of disorder. Based on our clinical results, tool yields 72%,
93%, 89% and 95% correct decisions on the selected dermatology diseases
respectively. System proposed will provide the opportunity for early diagnosis
for the patient and the expert medical doctor to take the necessary preventive
measures to treat the disease; and avoid malpractice which may cause
irreversible health damages.

Cite this article as: Zaim Gökbay İ, Zileli
ZB, Sarı P, Aksoy TT, Yarman S. A Linear Stochastic System Approach to Model
Symptom Based Clinical Decision Support Tool for the Early Diagnosis for
Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica,
2019; 19(1): 48-58.

Kaynakça

  • [1]Übeylı, Elif Derya, and Inan Güler. "Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems." Computers in biology and medicine 35.5 (2005): 421-433.
  • [2]H.A. Guvenir, G. Demiro z, N. ̇Ilter, Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals, Artif. Intell. Med. 13 (1998) 147–165.
  • [3]Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
  • [4]Fukunaga, Keinosuke. Introduction to statistical pattern recognition. Academic press, 2013.
  • [5]Griffiths, Christopher EM, and Jonathan NWN Barker. "Pathogenesis and clinical features of psoriasis." The Lancet370.9583 (2007): 263-271.
  • [6]http://emedicine.medscape.com/article/1108072-overview Access date:12.10.2016
  • [7] Oğuz,O., "Atopic Dermatitis, ", Skin Diseases and Wound Care Symposium, I. U. Cerrahpasa Faculty of Medicine CME, İstanbul, p. 57-59., 2001.
  • [8] http://www.florence.com.tr/dermatokozmetoloji/allerjik-deri-hastaliklari/atopik-dermatit.html Access date:12.10.2016
  • [9]Gökbay, I. Z., et al. "An Intelligent Decision Support Tool for Early Diagnosis of Functional Pituitary Adenomas." TWMS Journal of Applied and Engineering Mathematics 5.2 (2015): 169.
  • [10]Twiss, James, et al. "Can we rely on the Dermatology Life Quality Index as a measure of the impact of psoriasis or atopic dermatitis?." Journal of Investigative Dermatology 132.1 (2012): 76-84.
  • [11]Khairina, Dyna Marisa, et al. "Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method." E3S Web of Conferences. Vol. 31. EDP Sciences, 2018.
  • [12]Lee, Eva K. "Machine Learning For Early Detection And Treatment Outcome Prediction." Decision Analytics and Optimization in Disease Prevention and Treatment(2018): 367.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İnci Zaim Gökbay

Zeynep Beyza Zileli Bu kişi benim

Pelin Sarı Bu kişi benim

Türker Togay Aksoy

Sıddık Yarman

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 19 Sayı: 1

Kaynak Göster

APA Zaim Gökbay, İ., Zileli, Z. B., Sarı, P., Aksoy, T. T., vd. (2019). A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica, 19(1), 48-58.
AMA Zaim Gökbay İ, Zileli ZB, Sarı P, Aksoy TT, Yarman S. A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica. Ocak 2019;19(1):48-58.
Chicago Zaim Gökbay, İnci, Zeynep Beyza Zileli, Pelin Sarı, Türker Togay Aksoy, ve Sıddık Yarman. “A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis”. Electrica 19, sy. 1 (Ocak 2019): 48-58.
EndNote Zaim Gökbay İ, Zileli ZB, Sarı P, Aksoy TT, Yarman S (01 Ocak 2019) A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica 19 1 48–58.
IEEE İ. Zaim Gökbay, Z. B. Zileli, P. Sarı, T. T. Aksoy, ve S. Yarman, “A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis”, Electrica, c. 19, sy. 1, ss. 48–58, 2019.
ISNAD Zaim Gökbay, İnci vd. “A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis”. Electrica 19/1 (Ocak 2019), 48-58.
JAMA Zaim Gökbay İ, Zileli ZB, Sarı P, Aksoy TT, Yarman S. A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica. 2019;19:48–58.
MLA Zaim Gökbay, İnci vd. “A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis”. Electrica, c. 19, sy. 1, 2019, ss. 48-58.
Vancouver Zaim Gökbay İ, Zileli ZB, Sarı P, Aksoy TT, Yarman S. A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis. Electrica. 2019;19(1):48-5.