Araştırma Makalesi
BibTex RIS Kaynak Göster

Milimetre Dalga Uygulamaları İçin Çok Bantlı Mikroşerit Yama Anten Tasarımı Ve Analizi

Yıl 2026, Cilt: 16 Sayı: 1, 33 - 41, 31.01.2026

Öz

Bu çalışma, milimetre dalga frekans bandında çalışan beşinci nesil (5G) kablosuz iletişim sistemlerinde kullanılmak üzere tasarlanmış, kompakt ve çok bantlı, kaplumbağa şekilli özgün geometride bir mikroşerit yama antenin (MPA) tasarımını ve analizini sunmaktadır. Önerilen anten, merkezi eliptik bir yama, yamanın her iki yanında simetrik olarak konumlandırılmış iki döngü yapısı ve performansı artırmak amacıyla entegre edilmiş yarım dairesel yarıklardan oluşan özgün bir konfigürasyona sahiptir. Anten, göreli dielektrik sabiti (εᵣ) 2.2 ve kayıp tanjantı (tanδ) 0.0009 olan Taconic TLY-5 alt tabaka üzerinde, 32 × 14 × 0.381 mm³ boyutlarında imal edilmiştir. Düşük kayıp özelliği ve üretim süreçleriyle uyumluluğu nedeniyle mikroşerit hat besleme yöntemi kullanılmıştır. Elektromanyetik performans değerlendirmeleri, tam dalga simülasyon yeteneklerine sahip Computer Simulation Technology (CST) Studio Suite yazılımı ile gerçekleştirilmiştir. Simülasyon sonuçları, antenin 26.29 GHz, 28.44 GHz, 34.25 GHz, 36.75 GHz, 39.17 GHz ve 42.40 GHz merkez frekanslarında verimli bir şekilde çalıştığını göstermektedir. Bu frekanslarda elde edilen kazanç değerleri sırasıyla 6.69 dBi, 9.82 dBi, 8.58 dBi, 10.44 dBi, 10.37 dBi ve 7.50 dBi olarak ölçülmüştür. Ayrıca, anten geniş bir çalışma bant genişliği, düşük yansıma kaybı, uygun Gerilim Dalgası Durum Oranı VSWR değerleri ve kararlı ışıma desenleri sergileyerek, çok bantlı 5G mmWave uygulamaları için yüksek performanslı bir çözüm sunmaktadır.

Kaynakça

  • ] S. Punith, S. K. Praveenkumar, A. A. Jugale, and M. R. Ahmed, "A novel multiband microstrip patch antenna for 5G communications", Procedia Computer Science, vol. 171, pp. 2080–2086, 2020.
  • [2] D. H. Patel and G. D. Makwana, "A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication", International Journal of Computing and Digital System, 2021.
  • [3] J. Zhang and J. Mao, "A high-gain Ka-band microstrip patch antenna with simple slot structure", International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020.
  • [4] U. Venkateshkumar, S. Kiruthiga, H. Mihitha, K. Maheswari, and M. Nithiyasri, "Multiband patch antenna design for 5G applications", International Conference on Computing Methodologies and Communication (ICCMC), 2020, pp. 528–534.
  • [5] D. H. Sadek, H. A. Shawkey, and A. A. Zekry, "Multiband triple L-arms patch antenna with diamond slot ground for 5G applications", Applied Computational Electromagnetics Society Journal (ACES), vol. 36, pp. 302–307, 2021.
  • [6] M. Hussain, S. M. R. Jarchavi, S. I. Naqvi, U. Gulzar, S. Khan, M. Alibakhshikenari, and I. Huynen, "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka- and V-band spectrums", Electronics, vol. 10, 2021.
  • [7] A. S. Faris and M. M. Tulu, "Design and performance analysis of multi-band antenna for 5G application", Wireless Personal Communications, vol. 136, pp. 429–452, 2024.
  • [8] M. Sana, S. Ahmad, F. Abrar, and M. A. Qasim, "Millimeter-wave quad-band dielectric resonator antenna for 5G applications", International Conference on Smart Technologies, 2021, pp. 304–307.
  • [9] S. Ahmad, A. Ghaffar, X. J. Li, and N. Cherif, "A millimetre-wave tri-band antenna embedded on smart watch for wearable applications", International Symposium on Antennas and Propagation (ISAP), 2021.
  • [10] S. Kim, Y. A. Sharif, and I. Nasim, "Human electromagnetic field exposure in wearable communications systems: A review", e-Prime–Advances in Electrical Engineering, Electronics and Energy, vol. 8, 2024.
  • [11] P. K. Aylapogu and K. K. Gurrala, "MM wave based multiband spider slot patch antenna for 5G and underwater communication", Microsystem Technologies, vol. 29, pp. 1547–1556, 2023.
  • [12] M. Nahas, "A multi-slotted multi-band microstrip patch antenna design for 5G communication devices", Engineering, Technology & Applied Science Research, vol. 15, pp. 24605–24610, 2025.
  • [13] M. A. Uddin, M. J. Hossain, A. Shaha, M. N. Hossain, A. K. Chakrabarty, and M. H. Baharuddin, "Double negetive metamaterial-embedded microstrip patch antenna for Ka and V-band applications", International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 2024.
  • [14] F. M. Abdo, A. S. Gaid, M. M. Saeed, R. A. Saeed, and M. A. Alomari, "Tri-band circular microstrip patch antenna with slits and multilayered substrate for 5G mmWave communications", International Conference on Emerging Smart Technologies and Applications (eSmarTA), 2025.
  • [15] R. A. Fayadh, F. Malek, and H. A. Fadhil, "Spade-shaped patch antenna for ultra wideband wireless communication systems", International Journal of Advanced Computer Research, vol. 3, pp. 16–22, 2013.
  • [16] R. Erxleben, I. Ndip, L. Brusberg, H. Schröder, M. Töpper, W. Scheel, S. Guttowski and H. Reichl, "A comparative study of microstrip, stripline and coplanar lines on different substrate technologies for high-performance applications", International Symposium on Microelectronics, 2009.
  • [17] K. Ding, C. Gao, D. Qu, and Q. Yin, "Compact broadband circularly polarized antenna with parasitic patches", IEEE Transactions on Antennas and Propagation, vol. 65, pp. 4854–4857, 2017.
  • [18] R. Hasse, W. Hunsicker, K. Naishadham, A. Z. Elsherbeni, and D. Kajfez, "Analysis and design of a partitioned circular loop antenna for omni-directional radiation", International Symposium on Antennas and Propagation (APSURSI), 2011, pp. 1379–1382.
  • [19] H. Lee and Y. M. Lim, "Printed dual ring loop antenna for wide-dual-frequency band of wireless applications", Microwave and Optical Technology Letters, vol. 54, pp. 1317–1318, 2012.
  • [20] U. S. Modani and A. Jain, "A literature review of multi-frequency microstrip patch antenna designing techniques", International Journal of Research in Engineering, IT and Social Sciences, vol. 7, pp. 41-45, 2017.
  • [21] J. V. Jose, A. S. Rekh, and M. J. Jose, "Design techniques for elliptical microstrip patch antenna and their effects on antenna performance", International Journal of Innovative Technology and Exploring Engineering, vol. 8, pp. 2317–2326, 2019.
  • [22] K. R. Xiang and F. C. Chen, "A method for increasing the bandwidth of slot and patch antennas using grid-slotted patch", International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, 2021.
  • [23] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, USA, 2016.
  • [24] A. S. Abd El-Hameed, D. M. Elsheakh, G. M. Elashry, and E. A. Abdallah, "A comparative study of narrow/ultra-wideband microwave sensors for the continuous monitoring of vital signs and lung water level", Sensors, vol. 24, 2024.
  • [25] P. O. Otasowie and E. A. Ogujor, "Voltage standing wave ratio measurement and prediction", International Journal of Physical Sciences, vol. 4, pp. 651–656, 2009.
  • [26] A. Bansal and R. Gupta, "A review on microstrip patch antenna and feeding techniques", International Journal of Information Technology, vol. 12, pp. 149–154, 2020.
  • [27] F. Mehmood and A. Mehmood, "Recent advancements in millimeter-wave antennas and arrays: From compact wearable designs to beam-steering technologies", Electronics, vol. 14, 2025.

Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications

Yıl 2026, Cilt: 16 Sayı: 1, 33 - 41, 31.01.2026

Öz

This study presents the design and analysis of a compact, multiband, turtle-shaped microstrip patch antenna (MPA) with a novel geometry, developed for fifth-generation (5G) wireless communication systems operating in the millimeter-wave (mmWave) frequency band. The proposed antenna features a original configuration composed of a central elliptical patch, two symmetrically positioned loop structures on either side of the patch, and integrated semi-circular slots designed to enhance performance. The antenna is designed on a Taconic TLY-5 substrate with a dielectric constant (εᵣ) of 2.2 and a loss tangent (tanδ) of 0.0009, with overall dimensions of 32 × 14 × 0.381 mm³. Due to its low-loss characteristics and compatibility with fabrication processes, a microstrip line feeding technique has been employed. Electromagnetic performance evaluations were conducted using Computer Simulation Technology (CST) software. Simulation results indicate that the antenna operates efficiently at center frequencies of 26.29 GHz, 28.44 GHz, 34.25 GHz, 36.75 GHz, 39.17 GHz, and 42.40 GHz. The corresponding gain values at these frequencies are measured as 6.69 dBi, 9.82 dBi, 8.58 dBi, 10.44 dBi, 10.37 dBi, and 7.50 dBi, respectively. Furthermore, the antenna exhibits a wide operational bandwidth, low return loss, favorable Voltage Standing Wave Ratio (VSWR) values, and stable radiation patterns, offering a high-performance solution for multiband 5G mmWave applications.

Etik Beyan

Çalışmada etik kurul izni gerekmemekle beraber tüm çalışma etik davranışlar ve akademik kurallar çerçevesinde hazırlanmıştır.

Destekleyen Kurum

Herhangi bir kurum ya da kuruluştan destek alınmamıştır.

Kaynakça

  • ] S. Punith, S. K. Praveenkumar, A. A. Jugale, and M. R. Ahmed, "A novel multiband microstrip patch antenna for 5G communications", Procedia Computer Science, vol. 171, pp. 2080–2086, 2020.
  • [2] D. H. Patel and G. D. Makwana, "A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication", International Journal of Computing and Digital System, 2021.
  • [3] J. Zhang and J. Mao, "A high-gain Ka-band microstrip patch antenna with simple slot structure", International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020.
  • [4] U. Venkateshkumar, S. Kiruthiga, H. Mihitha, K. Maheswari, and M. Nithiyasri, "Multiband patch antenna design for 5G applications", International Conference on Computing Methodologies and Communication (ICCMC), 2020, pp. 528–534.
  • [5] D. H. Sadek, H. A. Shawkey, and A. A. Zekry, "Multiband triple L-arms patch antenna with diamond slot ground for 5G applications", Applied Computational Electromagnetics Society Journal (ACES), vol. 36, pp. 302–307, 2021.
  • [6] M. Hussain, S. M. R. Jarchavi, S. I. Naqvi, U. Gulzar, S. Khan, M. Alibakhshikenari, and I. Huynen, "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka- and V-band spectrums", Electronics, vol. 10, 2021.
  • [7] A. S. Faris and M. M. Tulu, "Design and performance analysis of multi-band antenna for 5G application", Wireless Personal Communications, vol. 136, pp. 429–452, 2024.
  • [8] M. Sana, S. Ahmad, F. Abrar, and M. A. Qasim, "Millimeter-wave quad-band dielectric resonator antenna for 5G applications", International Conference on Smart Technologies, 2021, pp. 304–307.
  • [9] S. Ahmad, A. Ghaffar, X. J. Li, and N. Cherif, "A millimetre-wave tri-band antenna embedded on smart watch for wearable applications", International Symposium on Antennas and Propagation (ISAP), 2021.
  • [10] S. Kim, Y. A. Sharif, and I. Nasim, "Human electromagnetic field exposure in wearable communications systems: A review", e-Prime–Advances in Electrical Engineering, Electronics and Energy, vol. 8, 2024.
  • [11] P. K. Aylapogu and K. K. Gurrala, "MM wave based multiband spider slot patch antenna for 5G and underwater communication", Microsystem Technologies, vol. 29, pp. 1547–1556, 2023.
  • [12] M. Nahas, "A multi-slotted multi-band microstrip patch antenna design for 5G communication devices", Engineering, Technology & Applied Science Research, vol. 15, pp. 24605–24610, 2025.
  • [13] M. A. Uddin, M. J. Hossain, A. Shaha, M. N. Hossain, A. K. Chakrabarty, and M. H. Baharuddin, "Double negetive metamaterial-embedded microstrip patch antenna for Ka and V-band applications", International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 2024.
  • [14] F. M. Abdo, A. S. Gaid, M. M. Saeed, R. A. Saeed, and M. A. Alomari, "Tri-band circular microstrip patch antenna with slits and multilayered substrate for 5G mmWave communications", International Conference on Emerging Smart Technologies and Applications (eSmarTA), 2025.
  • [15] R. A. Fayadh, F. Malek, and H. A. Fadhil, "Spade-shaped patch antenna for ultra wideband wireless communication systems", International Journal of Advanced Computer Research, vol. 3, pp. 16–22, 2013.
  • [16] R. Erxleben, I. Ndip, L. Brusberg, H. Schröder, M. Töpper, W. Scheel, S. Guttowski and H. Reichl, "A comparative study of microstrip, stripline and coplanar lines on different substrate technologies for high-performance applications", International Symposium on Microelectronics, 2009.
  • [17] K. Ding, C. Gao, D. Qu, and Q. Yin, "Compact broadband circularly polarized antenna with parasitic patches", IEEE Transactions on Antennas and Propagation, vol. 65, pp. 4854–4857, 2017.
  • [18] R. Hasse, W. Hunsicker, K. Naishadham, A. Z. Elsherbeni, and D. Kajfez, "Analysis and design of a partitioned circular loop antenna for omni-directional radiation", International Symposium on Antennas and Propagation (APSURSI), 2011, pp. 1379–1382.
  • [19] H. Lee and Y. M. Lim, "Printed dual ring loop antenna for wide-dual-frequency band of wireless applications", Microwave and Optical Technology Letters, vol. 54, pp. 1317–1318, 2012.
  • [20] U. S. Modani and A. Jain, "A literature review of multi-frequency microstrip patch antenna designing techniques", International Journal of Research in Engineering, IT and Social Sciences, vol. 7, pp. 41-45, 2017.
  • [21] J. V. Jose, A. S. Rekh, and M. J. Jose, "Design techniques for elliptical microstrip patch antenna and their effects on antenna performance", International Journal of Innovative Technology and Exploring Engineering, vol. 8, pp. 2317–2326, 2019.
  • [22] K. R. Xiang and F. C. Chen, "A method for increasing the bandwidth of slot and patch antennas using grid-slotted patch", International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, 2021.
  • [23] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, USA, 2016.
  • [24] A. S. Abd El-Hameed, D. M. Elsheakh, G. M. Elashry, and E. A. Abdallah, "A comparative study of narrow/ultra-wideband microwave sensors for the continuous monitoring of vital signs and lung water level", Sensors, vol. 24, 2024.
  • [25] P. O. Otasowie and E. A. Ogujor, "Voltage standing wave ratio measurement and prediction", International Journal of Physical Sciences, vol. 4, pp. 651–656, 2009.
  • [26] A. Bansal and R. Gupta, "A review on microstrip patch antenna and feeding techniques", International Journal of Information Technology, vol. 12, pp. 149–154, 2020.
  • [27] F. Mehmood and A. Mehmood, "Recent advancements in millimeter-wave antennas and arrays: From compact wearable designs to beam-steering technologies", Electronics, vol. 14, 2025.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
Bölüm Araştırma Makalesi
Yazarlar

Zeynep Onat

İsmail Yariçi

Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 28 Aralık 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 16 Sayı: 1

Kaynak Göster

APA Onat, Z., & Yariçi, İ. (2026). Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications. EMO Bilimsel Dergi, 16(1), 33-41. https://izlik.org/JA27XY38HU
AMA 1.Onat Z, Yariçi İ. Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications. EMO Bilimsel Dergi. 2026;16(1):33-41. https://izlik.org/JA27XY38HU
Chicago Onat, Zeynep, ve İsmail Yariçi. 2026. “Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications”. EMO Bilimsel Dergi 16 (1): 33-41. https://izlik.org/JA27XY38HU.
EndNote Onat Z, Yariçi İ (01 Ocak 2026) Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications. EMO Bilimsel Dergi 16 1 33–41.
IEEE [1]Z. Onat ve İ. Yariçi, “Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications”, EMO Bilimsel Dergi, c. 16, sy 1, ss. 33–41, Oca. 2026, [çevrimiçi]. Erişim adresi: https://izlik.org/JA27XY38HU
ISNAD Onat, Zeynep - Yariçi, İsmail. “Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications”. EMO Bilimsel Dergi 16/1 (01 Ocak 2026): 33-41. https://izlik.org/JA27XY38HU.
JAMA 1.Onat Z, Yariçi İ. Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications. EMO Bilimsel Dergi. 2026;16:33–41.
MLA Onat, Zeynep, ve İsmail Yariçi. “Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications”. EMO Bilimsel Dergi, c. 16, sy 1, Ocak 2026, ss. 33-41, https://izlik.org/JA27XY38HU.
Vancouver 1.Onat Z, Yariçi İ. Design and Analysis of a Multiband Microstrip Patch Antenna for Millimeter Wave Applications. EMO Bilimsel Dergi [Internet]. 01 Ocak 2026;16(1):33-41. Erişim adresi: https://izlik.org/JA27XY38HU

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr