Hafif Elektrikli Araçlar için Entegre Şarj Fonksiyonlu Çok Fazlı Sürekli Mıknatıslı Senkron Motor Tasarımı ve Optimizasyonu
Yıl 2026,
Cilt: 16 Sayı: 1, 43 - 63, 31.01.2026
Musa Burak Yelek
Murat Yilmaz
Öz
Hafif elektrikli araçlar (LEV), sürdürülebilir ulaşım, sıfır emisyon ve kompaktlık gereksinimleri nedeniyle yüksek verimli ve çok işlevli itki sistemlerine ihtiyaç duymaktadır. Bu çalışmada, entegre şarj özelliğine sahip, çok fazlı bir sürekli mıknatıslı senkron motor (PMSM) tasarlanmış ve hafif elektrikli araç uygulaması için ayrıntılı olarak analiz edilmiştir. Öncelikle simetrik 6-fazlı yapı esas alınarak dört farklı oluk–kutup kombinasyonu üzerinde analitik ön boyutlandırma yapılmış, ardından sonlu elemanlar analizleri (FEA) ile malzeme seçimi, faz sayısı ve rotor topolojilerinin performansa etkileri karşılaştırılmıştır. Double-V gömülü mıknatıslı (IPM), yüzey mıknatıslı (SPM) ve konsantrik sargılı yüzey mıknatıslı motor yapılarının, “Worldwide Harmonized Light-duty Vehicles Test Cycle (WLTC) Class-1” sürüş çevriminde ANSYS OptiSlang kullanılarak çok amaçlı optimizasyonu yapılmıştır. Optimizasyon sonuçlarına göre double-V gömülü mıknatıslı yapı, referans tasarıma kıyasla moment dalgalanmasını %80’in üzerinde azaltmış, %94.9 nominal verim ve toplam kayıplarda %41.4 azalma sağlamıştır. Aktif malzeme kütlesi yaklaşık %12 düşerken, tahrik ve şarj modlarında çift yönlü enerji akışına uygun kompakt bir LEV tahrik motoru elde edilmiştir.
Etik Beyan
Bu mühendislik araştırması, standart bilimsel ve profesyonel etik uygulamalara uygun olarak gerçekleştirilmiştir.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma, TÜBİTAK tarafından desteklenen “TÜBİTAK 1002 - 125E129” kodlu “Hafif E-Mobilite Uygulamalarında Entegre Şarj Sistemi için Yüksek Verimli ve Güç Yoğunluklu Çok-Fazlı E-Motor Tasarımı ve Geliştirilmesi” başlıklı proje kapsamında gerçekleştirilmiştir. Destek için TÜBİTAK’a teşekkür ederiz.
Kaynakça
-
[1] Emadi, A., Lee, Y., Rajashekara, K., “Power electronics and motor drives in electric, hybrid electric and plug-in hybrid electric vehicles”, IEEE Trans. Ind. Electron., 55(6), 2237–2245, 2008.n
-
[2] Yilmaz, M., Krein, P. T., “Review of integrated charging methods for plug-in electric and hybrid vehicles”, IEEE International Conference on Vehicular Electronics and Safety, ICVES, 346-351, 2012.
-
[3] Haghbin, S., Khan, K., Lundmark, S., Alaküla, M., Carlson, O., Leksell, M., Wallmark, O., “Integrated Chargers for EV’s and PHEV’s: Examples and New Solutions”, in Proc. ICEM, 2010.
-
[4] Valente, M., Wijekoon, T., Freijedo, F., Pescetto, P., Pellegrino, G., Bojoi, R., “Integrated on-board EV Battery Chargers: New perspectives and challenges for Safety Improvement,” 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 349-356, 2021.
-
[5] Sam, C. A., Jegathesan, V., “Bidirectional integrated on-board chargers for Electric Vehicles—a review”, Springer Sādhanā, 46(26), 1-14, 2021.
-
[6] Bak Y., Kang, H. S., “Control Methods for performance improvement of an integrated on-board battery charger in Hybrid Electric Vehicles”, MDPI Electronics, 10(20), 2506, 2021.
-
[7] Yilmaz, M., Krein, P. T., “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles”, IEEE Trans. Power Electron., 28(5), 2151-2169, 2013.
-
[8] Haghbin, S., Lundmark, S., Alakula, M., Carlson, O., “Grid-connected integrated battery chargers in vehicle applications: Review and new solution”, IEEE Trans. Ind. Electron., 60(2), 459–473, 2013.
-
[9] Foti, S., Testa, A., Scelba, G., De Caro, S., Tornello, L. D., “A V2G integrated battery charger based on an open end winding multilevel configuration”, IEEE Open Journal of Industry Applications, 1, 216–226, 2020.
-
[10] Wang, Z., Zhang, Y., You, S., Xiao, H., Cheng, M., “An integrated power conversion system for electric traction and V2G operation in electric vehicles with a small film capacitor”, IEEE Transactions on Power Electronics, 35(5), 5066–5077, 2020.
-
[11] Jaman, S., Chakraborty, S., Tran, D. D., Geury, T., El Baghdadi, M., Hegazy, O., “Review on integrated on-board Charger-traction systems: V2G topologies, control approaches, standards and power density state-of-the-art for electric vehicle”, Energies, 15(15), 5376, 2022.
-
[12] Lei, Y., Du, G., Li, T., Yang, Z., “An electric vehicle integrated battery charger with high utilization rate of the three‐phase open‐winding permanent‐magnet‐synchronous‐motor”, International Journal of Circuit Theory and Applications, 51(3), 1417–1439, 2022.
-
[13] Bhule D., Kaarthik, R. S., "A Grid Voltage Sensor-less Control Scheme for Single-Phase Integrated Battery Charger", IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2023.
-
[14] Lacroix, S., Laboure, E., Hilairet, M., “An Integrated Fast Battery Charger for Electric Vehicle”, in Proc. IEEE VPPC, 2010.
-
[15] Solero, L., “Nonconventional On-Board Charger for Electric Vehicle Propulsion Batteries”, IEEE Trans. Veh. Technol., 50(1), 144-149, 2001.
-
[16] De-Sousa, L., Bouchez, B., “Combined Electric Device for Powering and Charging”, International Patent WO 2010/057892 A1, 2010.
-
[17] Kempton, W., Tomic, J., “V2G power implementations: from stabilizing the grid to supporting large scale renewable energy”, Power Sources, 144(1), 268–279, 2005.
-
[18] Lee, Y., Khaligh, A. ve Emadi, A., “Advanced integrated bi-directional AC/DC and DC/DC converter for plug-in hybrid electric vehicles”, IEEE Trans.Veh. Technol., 58(3), 3970-3980, 2009.
-
[19] Thimmesch, D. “An SCR Inverter with an Integral Battery Charger for Electric Vehicles”, IEEE Trans. Ind. Appl., 21(4), 1023-1029, 1985.
-
[20] Rippel, W. E. “Integrated traction inverter and battery charger apparatus”, US Patent 4920475, 1990.
-
[21] Rippel, W. E., Cocconi, A. G. “Integrated motor drive and recharge system”, US Patent 5099186, 1992.
-
[22] Sousa, T. J., Pedrosa, D., Monteiro, V., Afonso, J. L. “A review on Integrated Battery Chargers for Electric vehicles”, Energies, 15(8), 2756, 2022.
-
[23] Cordeiro, A., Pires, V. F., Foito, D., Silva, J. F., Silva, J. F. “A three-phase on-board Integrated Battery Charger for EVs using a drive based on triple inverters”, IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022.
-
[24] Metwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., Ahmed, S. “A review of integrated on-board EV Battery Chargers: Advanced topologies, recent developments and optimal selection of FSCW slot/pole combination”, IEEE Access, 8, 85216–85242, 2020.
-
[25] Abdel-Khalik, A. S., Massoud, A., Ahmed, S. “Interior permanent magnet motor-based isolated on-board integrated battery charger for electric vehicles”, IET Electr. Power Appl., 12(1), 124-134, 2018.
-
[26] Raherimihaja, H. J., Xu, G., Zhang, Q. “Review and Novel Options of Three-Phase Integrated Battery Chargers for EVs”, 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-5, 2020.
-
[27] Pires, V. F., Cordeiro, A., Foito, D., Silva, J. F., Silva, J. F. “A three-phase on-board Integrated Battery Charger for EVs with six-phase machine and nine-switch converter”, 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 2019.
-
[28] Bousungnoen, P., Pao-La-Or, P. “A Single-Phase Integrated Battery Charger Simulation Compare On-board Battery Charger with PFC Boost Converter and PSFB DC-DC Converter”, 2023 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 2023.
-
[29] Woo, D. G., Choe, G. Y., Kim, J. S., Lee, B. K., Hur, J., Kang, G. B. “Comparison of Integrated Battery Chargers for plug-in electric vehicles: Topology and Control”, Proc. IEMDC,1294-1299, 2011.
-
[30] Pescetto, P., Pellegrino, G. “Integrated Isolated OBC for EVs with 6-phase Traction Motor Drives”, Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 4112–4117, 2020.
-
[31] Tang, L., Su, G. J. “A Low-Cost, Digitally-Controlled Charger for Plug-in Hybrid electric Vehicles”, Proc. IEEE ECCE, 3923-3929, 2009.
-
[32] Woo, D. G., Choe, G. Y., Kim, J. S., Lee, B. K., Hur, J., Kang, G. B. “Comparison of Integrated Battery Chargers for plug-in electric vehicles: Topology and Control”, Proc. IEMDC, 1294-1299, 2011.
-
[33] Sharma, S., Aware, M. V., Bhowate, A. “Integrated Battery Charger for EV by Using Three-Phase Induction Motor Stator Windings as Filter”, IEEE Tran. Transportation Electrification, 6(1), 83-94, 2020.
-
[34] Raherimihaja, H. J., Zhang, Q., Na, T., Shao, M., Wang, J. “A three-phase integrated battery charger for EVs based on six-phase open-end winding machine”, IEEE Trans. Power Electronics, 35(11), 12122–12132, 2020.
-
[35] Vidya, V., Kaarthik, R. S. “Modeling and control of an integrated battery charger with split-phase machine”, IEEE Trans. Ind. Appl., 57(2), 1588–1597, 2021.
-
[36] Sul, S. K., Lee, S. J. “An Integral Battery Charger for Four-wheel Drive Electric Vehicle.”, IEEE Trans. Ind. Appl., 31(5), 1096-1099, 1995.
-
[37] Lacressonniere, F., Cassoret, B. “Converter used as a battery charger and a motor speed controller in an industrial truck” Proc. EPE, 1–7, 2005.
-
[38] Subotic, I., Levi, E., Jones, M., Graovac, D. “Multiphase integrated on-board battery chargers for electrical vehicles.”, 15th European Conference on Power Electronics and Applications (EPE), 2013.
-
[39] Chang, H. C., Liaw, C. M. “Development of a Compact Switched-Reluctance Motor Drive for EV Propulsion with Voltage-Boosting and PFC Charging Capabilities”, IEEE Trans. Veh. Technol., 58(7), 3198-3215, 2009.
-
[40] Barnes, M., Pollock, C. “Forward converters for dual voltage switched reluctance motor drives.” IEEE Trans. Power Electronics, 16(1), 83–91, 2001.
-
[41] Haghbin, S., Alakula, M., Khan, K., Lundmark, S., Leksell, M., Wallmark, O., Carlson, O. “An Integrated Charger for Plug-in Hybrid Electric Vehicles Based on a Special Interior Permanent Magnet Motor” Proc. IEEE VPPC, 2010.
[42] Lacroix, S., Laboure, E., Hilairet, M. “An Integrated Fast Battery Charger for Electric Vehicle.” Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010.
-
[43] Sandulescu, A. P., Meinguet, F., Kestelyn, X., Semail, E., Bruyere, A. “Flux-weakening operation of open-end winding drive integrating a cost-effective high-power charger”, IET Electrical Systems in Transportation, 3(1), 10–21, 2013.
-
[44] Liu, T. H., Yi, Y. C., Yi, P. H., Chen, J. L. “Integrated battery charger with power factor correction for electric-propulsion systems”, IET Electr. Power Appl., 9(3), 229–238, 2015.
-
[45] Shi, C., Tang, Y., Khaligh, A. “A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles”, IEEE Trans. Veh. Technol., 66(12), 2017.
-
[46] Khan, K., Haghbin, S., Leksell, M., Wallmark, O. “Design and Performance Analysis of a Permanent-Magnet Assisted Synchronous Reluctance Machine for an Integrated Charger Application”, ICEM Konferansı Bildirileri, 1-6, 2010.
-
[47] Haghbin, S., Lundmark, S., Alakula, M., Carlson, O. “An Isolated High-Power Integrated Charger in Electrified Vehicle Applications”, IEEE Trans. Veh. Technol., 60(9), 4115-4126, 2011.
-
[48] Kong, P., Wang, S., Lee, F. C., Wang, C. “Common-mode EMI study and reduction technique for the interleaved multichannel PFC converter”, IEEE Trans. Power Electronics, 23, 2576–2584, 2008.
-
[49] Subotic, I., Bodo, N., Levi, E., Dumnic, B., Milicevic, D., Katic, V. “Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics”, IET Electric Power Applications, 10(3), 217–229, 2016.
-
[50] Zaja, M., Oprea, M., Suarez, C. G. “Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier”, IEEE Vehicle Power and Propulsion Conf. (VPPC), 1–6, 2014.
-
[51] Dupuy, P. “Electric traction chain for an automobile”, US Patent No. US 2011/0187185 A1, 2011.
-
[52] Renault. “Renault ZOE: the electric supermini for everyday use”, www.media.renault.com, Son erişim tarihi: Eylül, 2025.
-
[53] Loudot, S., Briane, B., Ploix, O. “Fast charging device for an electric vehicle” US Patent No. US 2012/0286740 A1, 2013.
-
[54] Hong, J., Lee, H., Nam, K. “Charging method for the secondary battery in dual-inverter drive systems for electric vehicles”, IEEE Trans. Power Electron., 30(2), 909–921, 2015.
-
[55] Subotic, I., Jones, M., Levi, E. “A fast on-board integrated battery charger for four-motor EVs”, Proceedings of the Int. Conf. Electrical Machines (ICEM), 2066–2072, 2014.
-
[56] Ali, S. Q., Mascarella, D., Joos, G., Tan, L. “Torque elimination for integrated battery charger based on two permanent magnet synchronous motor drives for electric vehicles” IET Electric Power Applications, 11(9), 1627–1635, 2017.
-
[57] Woo, D. G., Joo, D. M., Lee, B. K. “On the Feasibility of Integrated Battery Charger Utilizing Traction Motor and Inverter in Plug-In Hybrid Electric Vehicles”, IEEE Trans. Power Electronics, 30(12), 2015.
-
[58] Hemeida, A., Metwly, M. Y., Abdel-Khalik, A. S., Ahmed, S. “Optimal design of a 12-slot/10-Pole Six-phase SPM machine with different winding layouts for integrated on-board EV Battery charging”, Energies, 14(7), 1848, 2021.
-
[59] Haghbin, S., Guillen, I.S. “Integrated motor drive and non-isolated battery charger based on the torque cancelation in the motor”, Proc. IEEE Int. Conf. on Power Electron. and Drive Systems PEDS, 824–829, 2013.
-
[60] Subotic, I., Bodo, N., Levi, E. “On-board integrated battery charger for EVs using an asymmetrical nine-phase machine”, IEEE Trans. Ind. Electron., 62(5), 3285–3295, 2015.
-
[61] Subotic, I., Levi, E., Bodo, N. “A Fast On-Board Integrated Battery Charger for EVs Using an Asymmetrical Six-Phase Machine”, IEEE Vehicle Power and Propulsion Conf. (VPPC), 1-6, 2014.
-
[62] Subotic, I., Bodo, N., Levi, E. “An EV drive-train with integrated fast charging capability”, IEEE Trans. Power Electron., 31(2), 1461–1471, 2015.
-
[63] Subotic, I., Levi, E., Jones, M. “An integrated battery charger for EVs based on an asymmetrical six-phase machine”, Proc. IEEE Industrial Electronics Society Conf. IECON, 7242–7247, 2013.
-
[64] Subotic, I., Levi, E., Jones, M. “Multiphase integrated on-board battery chargers for electrical vehicles”, Proc. European Power Electronics and Applications Conf. EPE-ECCE, 1–10, 2013.
-
[65] Subotic, I., Levi, E. “An integrated battery charger for EVs based on a symmetrical six-phase machine”, IEEE Int. Symp. on Industrial Electronics ISIE, 2074–2079, 2014.
-
[66] Xiao, Y., Liu, C., Yu, F. “An Effective Charging-Torque Elimination Method for Six-Phase Integrated On-Board EV Chargers,” IEEE Trans. on Power Electron., 35(3), 2776-2786, 2020.
-
[67] Ullah, Z., Abdel-Khalek, A. S., Ahmed, S. “Integrated Onboard Battery Charger for EVs using Six-Phase IPMSM with Dual Three-phase and Asymmetrical Winding Configurations”, IEEE Int. Electric Machines & Drives Conf. (IEMDC), CA, USA, 1-7, 2023.
-
[68] Bodo, N., Levi, E., Subotic, I., Espina, J., Empringham, L., Johnson, C. M. “Efficiency Evaluation of Fully Integrated On-Board EV Battery Chargers With Nine-Phase Machines”, IEEE Trans. Energy Conversion, 32(1), 2017.
-
[69] Yelek, M. B. ve Yilmaz, M., “Design and optimization of a multiphase PMSM with integrated charging for light electric vehicles”, ELECO 2025 Elektrik Elektronik Bilgisayar Mühendisliği Konferansı, Bursa, Kasım 2025.
-
[70] Subotic, I., Bodo, N., Levi, E. “Single-Phase On-Board Integrated Battery Chargers for EVs Based on Multiphase Machines”, IEEE Trans. Power Electron., 31(9), 2016.
-
[71] Bodo, N., Subotic, I., Levi, E., Jones, M. “Single-phase on-board integrated battery charger based on a nine-phase machine”, Proc. IEEE Ind. Electron. Soc. Conf., Dallas, TX, USA, 3210–3216, 2014.
-
[72] Haghbin, S., Alakula, M. “Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding”, Int. Patent WO/2011/159241, 2011.
-
[73] Truntič, M., Konjedic, T., Milanovič, M., Šlibar, P., Rodič, M. “Control of Integrated Single-Phase PFC Charger for Electric Vehicle.”, IET Power Electronics, 11(11), 1804-1812, 2018. [74] Diab, M. S., Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M., Ahmed, S. “A Nine-Switch-Converter-Based Integrated Motor Drive and Battery Charger System for EVs Using Symmetrical Six-Phase Machines”, IEEE Trans. Ind. Electron., 63(9), 2016.
-
[75] Gieras, J. F., “Permanent Magnet Motor Technology: Design and Applications”, 3rd ed., CRC Press, Boca Raton, FL, 2010.
-
[76] Jahns, T. M., “Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive”, IEEE Trans. Ind. Appl., 23(4), 681–689, 1987.
-
[77] Boldea, I., Tutelea, L., Reluctance Electric Machines: Design and Control., CRC Press, Boca Raton, FL, 2018.
-
[78] Levi, E., “Multiphase Electric Machines for Variable-Speed Applications”, IEEE Trans. Ind. Electron., 55(5), 1893–1909, 2008.
-
[79] Krause, P. C., Wasynczuk, O., Sudhoff, S. D., Pekarek, S., “Analysis of Electric Machinery and Drive Systems”, 3rd ed., Wiley-IEEE Press, 2013.
-
[80] Blaschke, F., “The Principle of Field Orientation as Applied to the New Transvector Closed-Loop Control System for Rotating-Field Machines”, Siemens Review, 34, 217–220, 1972.
-
[81] Vas, P., “Vector Control of AC Machines”, Oxford University Press, Oxford, UK, 1990.
-
[82] Zhu, Z. Q., Howe, D., “Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles”, Proc. IEEE, 95(4), 746–765, 2007.
-
[83] Gillespie, T. D., “Fundamentals of Vehicle Dynamics”, SAE International, Warrendale, PA, 1992.
-
[84] Pyrhönen, J., Jokinen, T. ve Hrabovcová, V., “Design of Rotating Electrical Machines”, 2nd ed., Wiley, Chichester, UK, 2013, 612 pp., ISBN: 9781118300842.
-
[85] Hanselman, D. C., “Brushless Permanent Magnet Motor Design, 2nd ed., Magna Physics Publishing”, Lebanon, OH, USA, 2006, 434 pp., ISBN: 1-881855-15-5.
-
[86] Agarwal, R. K., “Principles of Electrical Machine Design”, S. K. Kataria & Sons, New Delhi, India, 2010, ISBN: 9788188458522.
-
[87] Sawhney, A. K., “A Course in Electrical Machine Design”, Dhanpat Rai & Co., New Delhi, India, 2011, ISBN: 9788177000159.
Design and Optimization of a Multi-Phase Permanent Magnet Synchronous Motor with Integrated Charging Function for Light Electric Vehicles
Yıl 2026,
Cilt: 16 Sayı: 1, 43 - 63, 31.01.2026
Musa Burak Yelek
Murat Yilmaz
Öz
Light electric vehicles (LEVs) require highly efficient and multifunctional propulsion systems to meet the demands of sustainable mobility, zero emissions, and compact design. In this study, a multiphase permanent magnet synchronous motor (PMSM) with integrated charging capability is designed and comprehensively analyzed for LEV applications. Based on a symmetric six-phase configuration, analytical pre-dimensioning is conducted for four different slot–pole combinations, followed by finite element analyses (FEA) to compare the effects of material selection, phase number, and rotor topology. Three motor configurations—double-V interior permanent magnet (IPM), surface-mounted permanent magnet (SPM), and concentric-wound surface-mounted SPM—are optimized using ANSYS OptiSlang under the “Worldwide Harmonized Light-duty Vehicles Test Cycle (WLTC) Class-1” driving conditions. According to the optimization results, the double-V IPM structure reduces torque ripple by more than 80% compared with the reference design, achieving 94.9% nominal efficiency and a 41.4% reduction in total losses. The active material mass is reduced by approximately 12%, yielding a compact LEV traction motor capable of bidirectional operation in both traction and charging modes.
Etik Beyan
This engineering research was conducted in accordance with standard scientific and professional ethical practices.
Destekleyen Kurum
TUBITAK
Teşekkür
This study was conducted under the TÜBİTAK 1002 project No. 125E129, titled “High-Efficiency and High-Power-Density Multi-Phase E-Motor Design and Development for Integrated Charging Systems in Light E-Mobility Applications.” We gratefully acknowledge the support provided by TÜBİTAK.
Kaynakça
-
[1] Emadi, A., Lee, Y., Rajashekara, K., “Power electronics and motor drives in electric, hybrid electric and plug-in hybrid electric vehicles”, IEEE Trans. Ind. Electron., 55(6), 2237–2245, 2008.n
-
[2] Yilmaz, M., Krein, P. T., “Review of integrated charging methods for plug-in electric and hybrid vehicles”, IEEE International Conference on Vehicular Electronics and Safety, ICVES, 346-351, 2012.
-
[3] Haghbin, S., Khan, K., Lundmark, S., Alaküla, M., Carlson, O., Leksell, M., Wallmark, O., “Integrated Chargers for EV’s and PHEV’s: Examples and New Solutions”, in Proc. ICEM, 2010.
-
[4] Valente, M., Wijekoon, T., Freijedo, F., Pescetto, P., Pellegrino, G., Bojoi, R., “Integrated on-board EV Battery Chargers: New perspectives and challenges for Safety Improvement,” 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 349-356, 2021.
-
[5] Sam, C. A., Jegathesan, V., “Bidirectional integrated on-board chargers for Electric Vehicles—a review”, Springer Sādhanā, 46(26), 1-14, 2021.
-
[6] Bak Y., Kang, H. S., “Control Methods for performance improvement of an integrated on-board battery charger in Hybrid Electric Vehicles”, MDPI Electronics, 10(20), 2506, 2021.
-
[7] Yilmaz, M., Krein, P. T., “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles”, IEEE Trans. Power Electron., 28(5), 2151-2169, 2013.
-
[8] Haghbin, S., Lundmark, S., Alakula, M., Carlson, O., “Grid-connected integrated battery chargers in vehicle applications: Review and new solution”, IEEE Trans. Ind. Electron., 60(2), 459–473, 2013.
-
[9] Foti, S., Testa, A., Scelba, G., De Caro, S., Tornello, L. D., “A V2G integrated battery charger based on an open end winding multilevel configuration”, IEEE Open Journal of Industry Applications, 1, 216–226, 2020.
-
[10] Wang, Z., Zhang, Y., You, S., Xiao, H., Cheng, M., “An integrated power conversion system for electric traction and V2G operation in electric vehicles with a small film capacitor”, IEEE Transactions on Power Electronics, 35(5), 5066–5077, 2020.
-
[11] Jaman, S., Chakraborty, S., Tran, D. D., Geury, T., El Baghdadi, M., Hegazy, O., “Review on integrated on-board Charger-traction systems: V2G topologies, control approaches, standards and power density state-of-the-art for electric vehicle”, Energies, 15(15), 5376, 2022.
-
[12] Lei, Y., Du, G., Li, T., Yang, Z., “An electric vehicle integrated battery charger with high utilization rate of the three‐phase open‐winding permanent‐magnet‐synchronous‐motor”, International Journal of Circuit Theory and Applications, 51(3), 1417–1439, 2022.
-
[13] Bhule D., Kaarthik, R. S., "A Grid Voltage Sensor-less Control Scheme for Single-Phase Integrated Battery Charger", IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2023.
-
[14] Lacroix, S., Laboure, E., Hilairet, M., “An Integrated Fast Battery Charger for Electric Vehicle”, in Proc. IEEE VPPC, 2010.
-
[15] Solero, L., “Nonconventional On-Board Charger for Electric Vehicle Propulsion Batteries”, IEEE Trans. Veh. Technol., 50(1), 144-149, 2001.
-
[16] De-Sousa, L., Bouchez, B., “Combined Electric Device for Powering and Charging”, International Patent WO 2010/057892 A1, 2010.
-
[17] Kempton, W., Tomic, J., “V2G power implementations: from stabilizing the grid to supporting large scale renewable energy”, Power Sources, 144(1), 268–279, 2005.
-
[18] Lee, Y., Khaligh, A. ve Emadi, A., “Advanced integrated bi-directional AC/DC and DC/DC converter for plug-in hybrid electric vehicles”, IEEE Trans.Veh. Technol., 58(3), 3970-3980, 2009.
-
[19] Thimmesch, D. “An SCR Inverter with an Integral Battery Charger for Electric Vehicles”, IEEE Trans. Ind. Appl., 21(4), 1023-1029, 1985.
-
[20] Rippel, W. E. “Integrated traction inverter and battery charger apparatus”, US Patent 4920475, 1990.
-
[21] Rippel, W. E., Cocconi, A. G. “Integrated motor drive and recharge system”, US Patent 5099186, 1992.
-
[22] Sousa, T. J., Pedrosa, D., Monteiro, V., Afonso, J. L. “A review on Integrated Battery Chargers for Electric vehicles”, Energies, 15(8), 2756, 2022.
-
[23] Cordeiro, A., Pires, V. F., Foito, D., Silva, J. F., Silva, J. F. “A three-phase on-board Integrated Battery Charger for EVs using a drive based on triple inverters”, IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022.
-
[24] Metwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., Ahmed, S. “A review of integrated on-board EV Battery Chargers: Advanced topologies, recent developments and optimal selection of FSCW slot/pole combination”, IEEE Access, 8, 85216–85242, 2020.
-
[25] Abdel-Khalik, A. S., Massoud, A., Ahmed, S. “Interior permanent magnet motor-based isolated on-board integrated battery charger for electric vehicles”, IET Electr. Power Appl., 12(1), 124-134, 2018.
-
[26] Raherimihaja, H. J., Xu, G., Zhang, Q. “Review and Novel Options of Three-Phase Integrated Battery Chargers for EVs”, 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-5, 2020.
-
[27] Pires, V. F., Cordeiro, A., Foito, D., Silva, J. F., Silva, J. F. “A three-phase on-board Integrated Battery Charger for EVs with six-phase machine and nine-switch converter”, 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 2019.
-
[28] Bousungnoen, P., Pao-La-Or, P. “A Single-Phase Integrated Battery Charger Simulation Compare On-board Battery Charger with PFC Boost Converter and PSFB DC-DC Converter”, 2023 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 2023.
-
[29] Woo, D. G., Choe, G. Y., Kim, J. S., Lee, B. K., Hur, J., Kang, G. B. “Comparison of Integrated Battery Chargers for plug-in electric vehicles: Topology and Control”, Proc. IEMDC,1294-1299, 2011.
-
[30] Pescetto, P., Pellegrino, G. “Integrated Isolated OBC for EVs with 6-phase Traction Motor Drives”, Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 4112–4117, 2020.
-
[31] Tang, L., Su, G. J. “A Low-Cost, Digitally-Controlled Charger for Plug-in Hybrid electric Vehicles”, Proc. IEEE ECCE, 3923-3929, 2009.
-
[32] Woo, D. G., Choe, G. Y., Kim, J. S., Lee, B. K., Hur, J., Kang, G. B. “Comparison of Integrated Battery Chargers for plug-in electric vehicles: Topology and Control”, Proc. IEMDC, 1294-1299, 2011.
-
[33] Sharma, S., Aware, M. V., Bhowate, A. “Integrated Battery Charger for EV by Using Three-Phase Induction Motor Stator Windings as Filter”, IEEE Tran. Transportation Electrification, 6(1), 83-94, 2020.
-
[34] Raherimihaja, H. J., Zhang, Q., Na, T., Shao, M., Wang, J. “A three-phase integrated battery charger for EVs based on six-phase open-end winding machine”, IEEE Trans. Power Electronics, 35(11), 12122–12132, 2020.
-
[35] Vidya, V., Kaarthik, R. S. “Modeling and control of an integrated battery charger with split-phase machine”, IEEE Trans. Ind. Appl., 57(2), 1588–1597, 2021.
-
[36] Sul, S. K., Lee, S. J. “An Integral Battery Charger for Four-wheel Drive Electric Vehicle.”, IEEE Trans. Ind. Appl., 31(5), 1096-1099, 1995.
-
[37] Lacressonniere, F., Cassoret, B. “Converter used as a battery charger and a motor speed controller in an industrial truck” Proc. EPE, 1–7, 2005.
-
[38] Subotic, I., Levi, E., Jones, M., Graovac, D. “Multiphase integrated on-board battery chargers for electrical vehicles.”, 15th European Conference on Power Electronics and Applications (EPE), 2013.
-
[39] Chang, H. C., Liaw, C. M. “Development of a Compact Switched-Reluctance Motor Drive for EV Propulsion with Voltage-Boosting and PFC Charging Capabilities”, IEEE Trans. Veh. Technol., 58(7), 3198-3215, 2009.
-
[40] Barnes, M., Pollock, C. “Forward converters for dual voltage switched reluctance motor drives.” IEEE Trans. Power Electronics, 16(1), 83–91, 2001.
-
[41] Haghbin, S., Alakula, M., Khan, K., Lundmark, S., Leksell, M., Wallmark, O., Carlson, O. “An Integrated Charger for Plug-in Hybrid Electric Vehicles Based on a Special Interior Permanent Magnet Motor” Proc. IEEE VPPC, 2010.
[42] Lacroix, S., Laboure, E., Hilairet, M. “An Integrated Fast Battery Charger for Electric Vehicle.” Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010.
-
[43] Sandulescu, A. P., Meinguet, F., Kestelyn, X., Semail, E., Bruyere, A. “Flux-weakening operation of open-end winding drive integrating a cost-effective high-power charger”, IET Electrical Systems in Transportation, 3(1), 10–21, 2013.
-
[44] Liu, T. H., Yi, Y. C., Yi, P. H., Chen, J. L. “Integrated battery charger with power factor correction for electric-propulsion systems”, IET Electr. Power Appl., 9(3), 229–238, 2015.
-
[45] Shi, C., Tang, Y., Khaligh, A. “A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles”, IEEE Trans. Veh. Technol., 66(12), 2017.
-
[46] Khan, K., Haghbin, S., Leksell, M., Wallmark, O. “Design and Performance Analysis of a Permanent-Magnet Assisted Synchronous Reluctance Machine for an Integrated Charger Application”, ICEM Konferansı Bildirileri, 1-6, 2010.
-
[47] Haghbin, S., Lundmark, S., Alakula, M., Carlson, O. “An Isolated High-Power Integrated Charger in Electrified Vehicle Applications”, IEEE Trans. Veh. Technol., 60(9), 4115-4126, 2011.
-
[48] Kong, P., Wang, S., Lee, F. C., Wang, C. “Common-mode EMI study and reduction technique for the interleaved multichannel PFC converter”, IEEE Trans. Power Electronics, 23, 2576–2584, 2008.
-
[49] Subotic, I., Bodo, N., Levi, E., Dumnic, B., Milicevic, D., Katic, V. “Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics”, IET Electric Power Applications, 10(3), 217–229, 2016.
-
[50] Zaja, M., Oprea, M., Suarez, C. G. “Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier”, IEEE Vehicle Power and Propulsion Conf. (VPPC), 1–6, 2014.
-
[51] Dupuy, P. “Electric traction chain for an automobile”, US Patent No. US 2011/0187185 A1, 2011.
-
[52] Renault. “Renault ZOE: the electric supermini for everyday use”, www.media.renault.com, Son erişim tarihi: Eylül, 2025.
-
[53] Loudot, S., Briane, B., Ploix, O. “Fast charging device for an electric vehicle” US Patent No. US 2012/0286740 A1, 2013.
-
[54] Hong, J., Lee, H., Nam, K. “Charging method for the secondary battery in dual-inverter drive systems for electric vehicles”, IEEE Trans. Power Electron., 30(2), 909–921, 2015.
-
[55] Subotic, I., Jones, M., Levi, E. “A fast on-board integrated battery charger for four-motor EVs”, Proceedings of the Int. Conf. Electrical Machines (ICEM), 2066–2072, 2014.
-
[56] Ali, S. Q., Mascarella, D., Joos, G., Tan, L. “Torque elimination for integrated battery charger based on two permanent magnet synchronous motor drives for electric vehicles” IET Electric Power Applications, 11(9), 1627–1635, 2017.
-
[57] Woo, D. G., Joo, D. M., Lee, B. K. “On the Feasibility of Integrated Battery Charger Utilizing Traction Motor and Inverter in Plug-In Hybrid Electric Vehicles”, IEEE Trans. Power Electronics, 30(12), 2015.
-
[58] Hemeida, A., Metwly, M. Y., Abdel-Khalik, A. S., Ahmed, S. “Optimal design of a 12-slot/10-Pole Six-phase SPM machine with different winding layouts for integrated on-board EV Battery charging”, Energies, 14(7), 1848, 2021.
-
[59] Haghbin, S., Guillen, I.S. “Integrated motor drive and non-isolated battery charger based on the torque cancelation in the motor”, Proc. IEEE Int. Conf. on Power Electron. and Drive Systems PEDS, 824–829, 2013.
-
[60] Subotic, I., Bodo, N., Levi, E. “On-board integrated battery charger for EVs using an asymmetrical nine-phase machine”, IEEE Trans. Ind. Electron., 62(5), 3285–3295, 2015.
-
[61] Subotic, I., Levi, E., Bodo, N. “A Fast On-Board Integrated Battery Charger for EVs Using an Asymmetrical Six-Phase Machine”, IEEE Vehicle Power and Propulsion Conf. (VPPC), 1-6, 2014.
-
[62] Subotic, I., Bodo, N., Levi, E. “An EV drive-train with integrated fast charging capability”, IEEE Trans. Power Electron., 31(2), 1461–1471, 2015.
-
[63] Subotic, I., Levi, E., Jones, M. “An integrated battery charger for EVs based on an asymmetrical six-phase machine”, Proc. IEEE Industrial Electronics Society Conf. IECON, 7242–7247, 2013.
-
[64] Subotic, I., Levi, E., Jones, M. “Multiphase integrated on-board battery chargers for electrical vehicles”, Proc. European Power Electronics and Applications Conf. EPE-ECCE, 1–10, 2013.
-
[65] Subotic, I., Levi, E. “An integrated battery charger for EVs based on a symmetrical six-phase machine”, IEEE Int. Symp. on Industrial Electronics ISIE, 2074–2079, 2014.
-
[66] Xiao, Y., Liu, C., Yu, F. “An Effective Charging-Torque Elimination Method for Six-Phase Integrated On-Board EV Chargers,” IEEE Trans. on Power Electron., 35(3), 2776-2786, 2020.
-
[67] Ullah, Z., Abdel-Khalek, A. S., Ahmed, S. “Integrated Onboard Battery Charger for EVs using Six-Phase IPMSM with Dual Three-phase and Asymmetrical Winding Configurations”, IEEE Int. Electric Machines & Drives Conf. (IEMDC), CA, USA, 1-7, 2023.
-
[68] Bodo, N., Levi, E., Subotic, I., Espina, J., Empringham, L., Johnson, C. M. “Efficiency Evaluation of Fully Integrated On-Board EV Battery Chargers With Nine-Phase Machines”, IEEE Trans. Energy Conversion, 32(1), 2017.
-
[69] Yelek, M. B. ve Yilmaz, M., “Design and optimization of a multiphase PMSM with integrated charging for light electric vehicles”, ELECO 2025 Elektrik Elektronik Bilgisayar Mühendisliği Konferansı, Bursa, Kasım 2025.
-
[70] Subotic, I., Bodo, N., Levi, E. “Single-Phase On-Board Integrated Battery Chargers for EVs Based on Multiphase Machines”, IEEE Trans. Power Electron., 31(9), 2016.
-
[71] Bodo, N., Subotic, I., Levi, E., Jones, M. “Single-phase on-board integrated battery charger based on a nine-phase machine”, Proc. IEEE Ind. Electron. Soc. Conf., Dallas, TX, USA, 3210–3216, 2014.
-
[72] Haghbin, S., Alakula, M. “Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding”, Int. Patent WO/2011/159241, 2011.
-
[73] Truntič, M., Konjedic, T., Milanovič, M., Šlibar, P., Rodič, M. “Control of Integrated Single-Phase PFC Charger for Electric Vehicle.”, IET Power Electronics, 11(11), 1804-1812, 2018. [74] Diab, M. S., Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M., Ahmed, S. “A Nine-Switch-Converter-Based Integrated Motor Drive and Battery Charger System for EVs Using Symmetrical Six-Phase Machines”, IEEE Trans. Ind. Electron., 63(9), 2016.
-
[75] Gieras, J. F., “Permanent Magnet Motor Technology: Design and Applications”, 3rd ed., CRC Press, Boca Raton, FL, 2010.
-
[76] Jahns, T. M., “Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive”, IEEE Trans. Ind. Appl., 23(4), 681–689, 1987.
-
[77] Boldea, I., Tutelea, L., Reluctance Electric Machines: Design and Control., CRC Press, Boca Raton, FL, 2018.
-
[78] Levi, E., “Multiphase Electric Machines for Variable-Speed Applications”, IEEE Trans. Ind. Electron., 55(5), 1893–1909, 2008.
-
[79] Krause, P. C., Wasynczuk, O., Sudhoff, S. D., Pekarek, S., “Analysis of Electric Machinery and Drive Systems”, 3rd ed., Wiley-IEEE Press, 2013.
-
[80] Blaschke, F., “The Principle of Field Orientation as Applied to the New Transvector Closed-Loop Control System for Rotating-Field Machines”, Siemens Review, 34, 217–220, 1972.
-
[81] Vas, P., “Vector Control of AC Machines”, Oxford University Press, Oxford, UK, 1990.
-
[82] Zhu, Z. Q., Howe, D., “Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles”, Proc. IEEE, 95(4), 746–765, 2007.
-
[83] Gillespie, T. D., “Fundamentals of Vehicle Dynamics”, SAE International, Warrendale, PA, 1992.
-
[84] Pyrhönen, J., Jokinen, T. ve Hrabovcová, V., “Design of Rotating Electrical Machines”, 2nd ed., Wiley, Chichester, UK, 2013, 612 pp., ISBN: 9781118300842.
-
[85] Hanselman, D. C., “Brushless Permanent Magnet Motor Design, 2nd ed., Magna Physics Publishing”, Lebanon, OH, USA, 2006, 434 pp., ISBN: 1-881855-15-5.
-
[86] Agarwal, R. K., “Principles of Electrical Machine Design”, S. K. Kataria & Sons, New Delhi, India, 2010, ISBN: 9788188458522.
-
[87] Sawhney, A. K., “A Course in Electrical Machine Design”, Dhanpat Rai & Co., New Delhi, India, 2011, ISBN: 9788177000159.