BibTex RIS Kaynak Göster

Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi

Yıl 2015, Cilt: 5 Sayı: 9, 1 - 5, 30.06.2015

Öz

Özet

 

Büyük ve çok değişkenli sistemlerin davranışlarını tahmin etmek bir çok bilim alanında araştırma konusu olmuştur. Sporun tüm dünya tarafından takip edilen bir alan olması sebebiyle, bir spor müsabakasının sonucunu tahmin etmek üzerine yapılan çalışmaların sayısı da artmaktadır. Bir spor müsabakasının sonucu bir çok farklı sübjektif değişkene bağlı olsa da, temel olarak takımların ofansif ve defansif yeteneklerine göre şekillenir. Bu çalışmada takımların sezon başından itibaren attığı ve yediği gol ortalaması temel alınan basit bir formül kullanılarak, çeşitli makine öğrenmesi algoritmalarının sadece takımların ofansif ve defansif yeteneklerini dikkate alarak maçın sonucunu ne kadar başarılı tahmin edebildiği incelenmiştir. Avrupa’ dan 16 futbol liginde yapılan testler neticesinde DecisionTable çoğunlukla en yüksek başarıyı veren algoritma olmuştur.

 

Abstract

 

Predicting the behaviour of complex and multi-variate systems have always been a study area among different science areas. As sports have a world-wide popularity, the number of studies about predicting the result of sports games increase day by day. Although the result of a sports game depends on many subjective variables, mostly competitors’ offensive and defensive skills affect the final result. This study uses a simple formula based on competitors’ scored and conceded goal averages since the beginning of the season; and investigates how machine learning algorithms perform, when only teams’ offensive and defensive skills are taken into account. According to the tests done using 16 European football leagues, DecisionTable mostly performs the best.

Kaynakça

  • Maher, M. J. (1982), Modelling association football scores. Statistica Neerlandica, 36: 109–118.
  • Dixon, M. J. and Coles, S. G. (1997), Modelling Association Football Scores and Inefficiencies in the Football Betting Market. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46: 265–280
  • Crowder, M., Dixon, M., Ledford, A. and Robinson, M. (2002), Dynamic modelling and prediction of English Football League matches for betting. Journal of the Royal Statistical Society: Series D (The Statistician), 51: 157–168
  • Karlis, D. and Ntzoufras, I. (2011). Robust fitting of football prediction models. IMA Journal of Management Mathematics, 22, 171-182.
  • Rue, H. and Salvesen, O. (2000), Prediction and Retrospective Analysis of Soccer Matches in a League. Journal of the Royal Statistical Society: Series D (The Statistician), 49: 399–418.
  • Karlis D. and Ntzoufras J. (2000). On modelling soccer data. Student 3, 229-245.
  • Karlis, D. and Ntzoufras, J. (2003) Analysis of sports data Using bivariate Poisson models. The Statistician 52, 381-393.
  • Knorr-Held (2000) Dynamic Rating of Sports Teams. The Statistician 49, 261-276
  • Koning, R. H. (2000), Balance in Competition in Dutch Soccer. Journal of the Royal Statistical Society: Series D (The Statistician), 49: 419–431
  • Pollard, R. (1986). Home advantage in soccer: A retrospective analysis. Journal of Sports Sciences, 4, 237-248.
  • Huang, K.Y. (2010). A Neural Network Method for Prediction of 2006 World Cup Football Game. The 2010 International Joint Conference on Neural Networks, 1-8.
  • McCabe, A., Trevathan, J. (2008). Artificial Intelligence in Sports Prediction. Fifth International Conference on Information Technology: New Generations, 1194-1197.
  • Hucaljuk, J., Rakipovic, A. (2011). Predicting football scores using machine learning techniques. MIPRO 2011, 1623-1627.
Yıl 2015, Cilt: 5 Sayı: 9, 1 - 5, 30.06.2015

Öz

Kaynakça

  • Maher, M. J. (1982), Modelling association football scores. Statistica Neerlandica, 36: 109–118.
  • Dixon, M. J. and Coles, S. G. (1997), Modelling Association Football Scores and Inefficiencies in the Football Betting Market. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46: 265–280
  • Crowder, M., Dixon, M., Ledford, A. and Robinson, M. (2002), Dynamic modelling and prediction of English Football League matches for betting. Journal of the Royal Statistical Society: Series D (The Statistician), 51: 157–168
  • Karlis, D. and Ntzoufras, I. (2011). Robust fitting of football prediction models. IMA Journal of Management Mathematics, 22, 171-182.
  • Rue, H. and Salvesen, O. (2000), Prediction and Retrospective Analysis of Soccer Matches in a League. Journal of the Royal Statistical Society: Series D (The Statistician), 49: 399–418.
  • Karlis D. and Ntzoufras J. (2000). On modelling soccer data. Student 3, 229-245.
  • Karlis, D. and Ntzoufras, J. (2003) Analysis of sports data Using bivariate Poisson models. The Statistician 52, 381-393.
  • Knorr-Held (2000) Dynamic Rating of Sports Teams. The Statistician 49, 261-276
  • Koning, R. H. (2000), Balance in Competition in Dutch Soccer. Journal of the Royal Statistical Society: Series D (The Statistician), 49: 419–431
  • Pollard, R. (1986). Home advantage in soccer: A retrospective analysis. Journal of Sports Sciences, 4, 237-248.
  • Huang, K.Y. (2010). A Neural Network Method for Prediction of 2006 World Cup Football Game. The 2010 International Joint Conference on Neural Networks, 1-8.
  • McCabe, A., Trevathan, J. (2008). Artificial Intelligence in Sports Prediction. Fifth International Conference on Information Technology: New Generations, 1194-1197.
  • Hucaljuk, J., Rakipovic, A. (2011). Predicting football scores using machine learning techniques. MIPRO 2011, 1623-1627.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Berk Karaoğlu

Yayımlanma Tarihi 30 Haziran 2015
Gönderilme Tarihi 14 Temmuz 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 5 Sayı: 9

Kaynak Göster

APA Karaoğlu, B. (2015). Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi. EMO Bilimsel Dergi, 5(9), 1-5.
AMA Karaoğlu B. Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi. EMO Bilimsel Dergi. Haziran 2015;5(9):1-5.
Chicago Karaoğlu, Berk. “Makine Öğrenmesi Ile Spor Karşılaşmalarının Modellenmesi”. EMO Bilimsel Dergi 5, sy. 9 (Haziran 2015): 1-5.
EndNote Karaoğlu B (01 Haziran 2015) Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi. EMO Bilimsel Dergi 5 9 1–5.
IEEE B. Karaoğlu, “Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi”, EMO Bilimsel Dergi, c. 5, sy. 9, ss. 1–5, 2015.
ISNAD Karaoğlu, Berk. “Makine Öğrenmesi Ile Spor Karşılaşmalarının Modellenmesi”. EMO Bilimsel Dergi 5/9 (Haziran 2015), 1-5.
JAMA Karaoğlu B. Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi. EMO Bilimsel Dergi. 2015;5:1–5.
MLA Karaoğlu, Berk. “Makine Öğrenmesi Ile Spor Karşılaşmalarının Modellenmesi”. EMO Bilimsel Dergi, c. 5, sy. 9, 2015, ss. 1-5.
Vancouver Karaoğlu B. Makine Öğrenmesi ile Spor Karşılaşmalarının Modellenmesi. EMO Bilimsel Dergi. 2015;5(9):1-5.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr