Araştırma Makalesi
BibTex RIS Kaynak Göster

İki Yönlü Dik Uzaysal Modülasyon

Yıl 2017, Cilt: 7 Sayı: 14, 21 - 27, 31.12.2017

Öz

Bu çalışmada, iki kullanıcının dik uzaysal modülasyon (quadrature spatial modulation (QSM)) iletim tekniği kullanarak, yarı çift-yönlü (half-duplex) bir röle yardımı ile   haberleşmesini sağlayan iki-yönlü QSM sistemi önerilmiştir. Buna göre, birinci zaman diliminde, eşit hızlı iki kullanıcı, bilgilerini, QSM iletim tekniği ile yarı çift-yönlü bir röleye iletmektedir. İkinci zaman diliminde ise, iki kullanıcıdan röleye gelen bilgi simgeleri ortak olarak çözüldükten sonra bit düzeyinde XOR (ayrıcalıklı veya) işlemi uygulanarak, QSM iletim tekniği ile  kullanıcıara gönderilmektedir. Her kullanıcı, röleden gönderilen bilgi ile kendi bilgisine XOR işlemi uygulayarak diğer kullanıcının bilgisine ulaşmaktadır. QSM  için tasarlanan sistem, aynı şekilde  referans bir yapı olabilmesi açısından uzaysal modülasyon (spatial modulation (SM)) sistemi için de gerçeklenmiştir.   İki-yönlü QSM ve SM sistemlerinin kuramsal hata analizi yapılarak ortalama bit hata olasılığı (ABEP) elde edilmiştir. Ayrıca farklı bant verimlilikleri ve MIMO yapıları için iki-yönlü QSM ve  iki-yönlü SM sistemlerinin hata başarımları karşılaştırılmıştır.

Kaynakça

  • [1] H. Jafarkhani, Space-time coding: Theory and Practice. Cambridge university press, 2005.
  • [2] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multielement antennas,” Alcatel-Lucent Bell Lab. Tech. J., vol. 1, no. 2, pp. 41–59, 1996, 1996.
  • [3] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation-a new low complexity spectral efficiency enhancing technique,” in IEEE Commun. Netw. (China- Com’06), pp. 1–5, 2006.
  • [4] E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun. Mag., vol. 54, no. 7, 2016.
  • [5] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for mimo channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692–3703, 2009.
  • [6] N. Serafimovski, S. Sinanovic, M. Di Renzo, and H. Haas, “Dual-hop spatial modulation (dh-sm),” in 73rd Veh. Technol. Conf. (VTC Spring), 2011 IEEE, pp. 1–5, 2011.
  • [7] S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed spatial modulation: A cooperative diversity protocol for half-duplex relay-aided wireless networks,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 2947–2964, 2016.
  • [8] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,” in Proc. Signals, Sys. Comput., pp. 1498–1502, 2010.
  • [9] J. Fu, C. Hou, W. Xiang, L. Yan, and Y. Hou, “Generalised spatial modulation with multiple active transmit antennas,” in Proc. IEEE Globecom Workshops, pp. 839–844, 2010.
  • [10] T. Datta, H. S. Eshwaraiah, and A. Chockalingam, “Generalized space-and-frequency index modulation,” IEEE Trans. Veh.Technol., vol. 65, no. 7, pp. 4911–4924, 2016.
  • [11] C.-C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, “Enhanced spatial modulation with multiple signal constellations,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2237– 2248, Jun. 2015.
  • [12] E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “Spacetime block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823–832, 2011.
  • [13] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738–2742, Jun. 2015.
  • [14] R. Mesleh and S. S. Ikki, “On the impact of imperfect channel knowledge on the performance of quadrature spatial modulation,” in Wireless Commun. Netw. Conf. (WCNC), 2015 IEEE, pp. 534–538, 2015.
  • [15] A. Younis, R. Mesleh, and H. Haas, “Quadrature spatial modulation performance over nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 10 227– 10 231, 2016.
  • [16] M. M. Alwakeel, “Quadrature spatial modulation performance analysis over rician fading channels,” J. Commun., vol. 11, no. 3, 2016.
  • [17] S. Koila, N. Neha, and U. Sripati, “Performance of spatialmodulation and spatial-multiplexing systems over weibull fading channel,” in 2015 Int.l Conf. Computing and Netw. Commun. (CoCoNet),, pp. 389–394, 2015.
  • [18] O. S. Badarneh and R. Mesleh, “Performance of quadrature spatial modulation with imperfect channel information over correlated - fading channels,” inWireless Commun. Netw. Conf. (WCNC), pp. 1–5, 2016.
  • [19] ——, “A comprehensive framework for quadrature spatial modulation in generalized fading scenarios,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2961–2970, 2016.
  • [20] L. Xiao, P. Yang, S. Fan, S. Li, L. Song, and Y. Xiao, “Low-complexity signal detection for large-scale quadrature spatial modulation systems,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2173–2176, 2016.
  • [21] Z. Yigit and E. Basar, “Low-complexity detection of quadrature spatial modulation,” IET Electron.Lett., vol. 52, no. 20, pp. 1729–1731, 2016.
  • [22] I. Al-Nahhal, O. Dobre, and S. Ikki, “Quadrature spatial modulation decoding complexity: Study and reduction,” IEEE Wireless Commun. Lett., 2017.
  • [23] J. Li, X. Jiang, Y. Yan,W. Yu, S. Song, and M. H. Lee, “Low complexity detection for quadrature spatial modulation systems,” Wireless Personal Commun., pp. 1–13, 2017.
  • [24] A. Afana, R. Mesleh, S. Ikki, and I. E. Atawi, “Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying,” IEEE Commun. Lett., vol. 20, no. 2, pp. 240–243, 2016.
  • [25] A. Afana, E. Erdogan, and S. Ikki, “Quadrature spatial modulation for cooperative mimo 5g wireless networks,” in Globecom Workshops (GC Wkshps), 2016, pp. 1–5, 2016.
  • [26] A. Afana, I. Atawi, S. Ikki, and R. Mesleh, “Energy efficient quadrature spatial modulation mimo cognitive radio systems with imperfect channel estimation,” in Ubiquitous Wireless Broadband (ICUWB), 2015 IEEE Int. Conf., pp. 1–5, 2015.
  • [27] A. Afana, S. Ikki, R. Mesleh, and I. Atawi, “Spectralefficient quadrature spatial modulation cooperative amplify and forward spectrum-sharing systems,” IEEE Trans. Veh. Techno., vol. 66, no. 3, pp. 2857–2861, 2017.
  • [28] I. A. Mahady, A. Afana, R. Mesleh, S. Ikki, and I. Atawi, “Cognitive mimo quadrature spatial modulation systems with mutual primary-secondary co-channel interference,” in Wireless Commun. Netw. Conf. (WCNC), pp. 1–5, 2016.
  • [29] R. Mesleh and A. Younis, “Capacity analysis for los millimeter–wave quadrature spatial modulation,” Springer Wireless Netw., pp. 1–10, 2017.
  • [30] A. Younis, N. Abuzgaia, R. Mesleh, and H. Haas, “Quadrature spatial modulation for 5g outdoor millimeter-wave communications: Capacity analysis,” IEEE Trans. Wireless Commun., 2017.
  • [31] R. Mesleh and A. Younis, “Los millimeter-wave communication with quadrature spatial modulation,” in IEEE Int. Symp. Signal Proc. Inf. Technol. (ISSPIT), pp. 109–113, 2016.
  • [32] Z. Yigit and E. Basar, “Double spatial modulation: A highrate index modulation scheme for mimo systems,” in Wireless Commun. Systems (ISWCS), 2016 Int. Symp., pp. 347– 351, 2016.
  • [33] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, 2000.
  • [34] Y.Wu, P. A. Chou, S.-Y. Kung et al., “Information exchange in wireless networks with network coding and physicallayer broadcast,” Tech. Rep., 2005.
  • [35] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physicallayer network coding,” in Proc. 12th Annu. Int. Conf. Mobile Comput. and Netw. (ACM), pp. 358–365, 2006.
  • [36] P. Popovski and H. Yomo, “Physical network coding in twoway wireless relay channels,” in IEEE Int. Conf. Commun. (ICC’07), pp. 707–712, 2007.
  • [37] D. Gunduz, A. Goldsmith, and H. V. Poor, “Mimo two-way relay channel: Diversity-multiplexing tradeoff analysis,” in IEEE Signals, Systems and Computers, 2008 42nd Asilomar Conf., pp. 1474–1478, 2008.
  • [38] I. Hammerstrom, M. Kuhn, C. Esli, J. Zhao, A. Wittneben, and G. Bauch, “Mimo two-way relaying with transmit csi at the relay,” in IEEE Signal Processing Advances in Wireless Commun. (SPAWC), pp. 1–5, 2007.
  • [39] X. Xie, Z. Zhao, M. Peng, and W. Wang, “Spatial modulation in two-way network coded channels: Performance and mapping optimization,” in Personal Indoor and Mobile Radio Commun. (PIMRC), 2012 IEEE 23rd Int. Symp., pp. 72– 76, 2012.
  • [40] Y. Yang, “Spatial modulation exploited in non-reciprocal two-way relay channels: Efficient protocols and capacity analysis,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2821– 2834, 2016.
  • [41] M. K. Simon and M.-S. Alouini, Digital communication over fading channels. John Wiley & Sons, vol. 95, 2005.
Yıl 2017, Cilt: 7 Sayı: 14, 21 - 27, 31.12.2017

Öz

Kaynakça

  • [1] H. Jafarkhani, Space-time coding: Theory and Practice. Cambridge university press, 2005.
  • [2] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multielement antennas,” Alcatel-Lucent Bell Lab. Tech. J., vol. 1, no. 2, pp. 41–59, 1996, 1996.
  • [3] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation-a new low complexity spectral efficiency enhancing technique,” in IEEE Commun. Netw. (China- Com’06), pp. 1–5, 2006.
  • [4] E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun. Mag., vol. 54, no. 7, 2016.
  • [5] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for mimo channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692–3703, 2009.
  • [6] N. Serafimovski, S. Sinanovic, M. Di Renzo, and H. Haas, “Dual-hop spatial modulation (dh-sm),” in 73rd Veh. Technol. Conf. (VTC Spring), 2011 IEEE, pp. 1–5, 2011.
  • [7] S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed spatial modulation: A cooperative diversity protocol for half-duplex relay-aided wireless networks,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 2947–2964, 2016.
  • [8] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,” in Proc. Signals, Sys. Comput., pp. 1498–1502, 2010.
  • [9] J. Fu, C. Hou, W. Xiang, L. Yan, and Y. Hou, “Generalised spatial modulation with multiple active transmit antennas,” in Proc. IEEE Globecom Workshops, pp. 839–844, 2010.
  • [10] T. Datta, H. S. Eshwaraiah, and A. Chockalingam, “Generalized space-and-frequency index modulation,” IEEE Trans. Veh.Technol., vol. 65, no. 7, pp. 4911–4924, 2016.
  • [11] C.-C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, “Enhanced spatial modulation with multiple signal constellations,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2237– 2248, Jun. 2015.
  • [12] E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “Spacetime block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823–832, 2011.
  • [13] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738–2742, Jun. 2015.
  • [14] R. Mesleh and S. S. Ikki, “On the impact of imperfect channel knowledge on the performance of quadrature spatial modulation,” in Wireless Commun. Netw. Conf. (WCNC), 2015 IEEE, pp. 534–538, 2015.
  • [15] A. Younis, R. Mesleh, and H. Haas, “Quadrature spatial modulation performance over nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 10 227– 10 231, 2016.
  • [16] M. M. Alwakeel, “Quadrature spatial modulation performance analysis over rician fading channels,” J. Commun., vol. 11, no. 3, 2016.
  • [17] S. Koila, N. Neha, and U. Sripati, “Performance of spatialmodulation and spatial-multiplexing systems over weibull fading channel,” in 2015 Int.l Conf. Computing and Netw. Commun. (CoCoNet),, pp. 389–394, 2015.
  • [18] O. S. Badarneh and R. Mesleh, “Performance of quadrature spatial modulation with imperfect channel information over correlated - fading channels,” inWireless Commun. Netw. Conf. (WCNC), pp. 1–5, 2016.
  • [19] ——, “A comprehensive framework for quadrature spatial modulation in generalized fading scenarios,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2961–2970, 2016.
  • [20] L. Xiao, P. Yang, S. Fan, S. Li, L. Song, and Y. Xiao, “Low-complexity signal detection for large-scale quadrature spatial modulation systems,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2173–2176, 2016.
  • [21] Z. Yigit and E. Basar, “Low-complexity detection of quadrature spatial modulation,” IET Electron.Lett., vol. 52, no. 20, pp. 1729–1731, 2016.
  • [22] I. Al-Nahhal, O. Dobre, and S. Ikki, “Quadrature spatial modulation decoding complexity: Study and reduction,” IEEE Wireless Commun. Lett., 2017.
  • [23] J. Li, X. Jiang, Y. Yan,W. Yu, S. Song, and M. H. Lee, “Low complexity detection for quadrature spatial modulation systems,” Wireless Personal Commun., pp. 1–13, 2017.
  • [24] A. Afana, R. Mesleh, S. Ikki, and I. E. Atawi, “Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying,” IEEE Commun. Lett., vol. 20, no. 2, pp. 240–243, 2016.
  • [25] A. Afana, E. Erdogan, and S. Ikki, “Quadrature spatial modulation for cooperative mimo 5g wireless networks,” in Globecom Workshops (GC Wkshps), 2016, pp. 1–5, 2016.
  • [26] A. Afana, I. Atawi, S. Ikki, and R. Mesleh, “Energy efficient quadrature spatial modulation mimo cognitive radio systems with imperfect channel estimation,” in Ubiquitous Wireless Broadband (ICUWB), 2015 IEEE Int. Conf., pp. 1–5, 2015.
  • [27] A. Afana, S. Ikki, R. Mesleh, and I. Atawi, “Spectralefficient quadrature spatial modulation cooperative amplify and forward spectrum-sharing systems,” IEEE Trans. Veh. Techno., vol. 66, no. 3, pp. 2857–2861, 2017.
  • [28] I. A. Mahady, A. Afana, R. Mesleh, S. Ikki, and I. Atawi, “Cognitive mimo quadrature spatial modulation systems with mutual primary-secondary co-channel interference,” in Wireless Commun. Netw. Conf. (WCNC), pp. 1–5, 2016.
  • [29] R. Mesleh and A. Younis, “Capacity analysis for los millimeter–wave quadrature spatial modulation,” Springer Wireless Netw., pp. 1–10, 2017.
  • [30] A. Younis, N. Abuzgaia, R. Mesleh, and H. Haas, “Quadrature spatial modulation for 5g outdoor millimeter-wave communications: Capacity analysis,” IEEE Trans. Wireless Commun., 2017.
  • [31] R. Mesleh and A. Younis, “Los millimeter-wave communication with quadrature spatial modulation,” in IEEE Int. Symp. Signal Proc. Inf. Technol. (ISSPIT), pp. 109–113, 2016.
  • [32] Z. Yigit and E. Basar, “Double spatial modulation: A highrate index modulation scheme for mimo systems,” in Wireless Commun. Systems (ISWCS), 2016 Int. Symp., pp. 347– 351, 2016.
  • [33] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, 2000.
  • [34] Y.Wu, P. A. Chou, S.-Y. Kung et al., “Information exchange in wireless networks with network coding and physicallayer broadcast,” Tech. Rep., 2005.
  • [35] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physicallayer network coding,” in Proc. 12th Annu. Int. Conf. Mobile Comput. and Netw. (ACM), pp. 358–365, 2006.
  • [36] P. Popovski and H. Yomo, “Physical network coding in twoway wireless relay channels,” in IEEE Int. Conf. Commun. (ICC’07), pp. 707–712, 2007.
  • [37] D. Gunduz, A. Goldsmith, and H. V. Poor, “Mimo two-way relay channel: Diversity-multiplexing tradeoff analysis,” in IEEE Signals, Systems and Computers, 2008 42nd Asilomar Conf., pp. 1474–1478, 2008.
  • [38] I. Hammerstrom, M. Kuhn, C. Esli, J. Zhao, A. Wittneben, and G. Bauch, “Mimo two-way relaying with transmit csi at the relay,” in IEEE Signal Processing Advances in Wireless Commun. (SPAWC), pp. 1–5, 2007.
  • [39] X. Xie, Z. Zhao, M. Peng, and W. Wang, “Spatial modulation in two-way network coded channels: Performance and mapping optimization,” in Personal Indoor and Mobile Radio Commun. (PIMRC), 2012 IEEE 23rd Int. Symp., pp. 72– 76, 2012.
  • [40] Y. Yang, “Spatial modulation exploited in non-reciprocal two-way relay channels: Efficient protocols and capacity analysis,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2821– 2834, 2016.
  • [41] M. K. Simon and M.-S. Alouini, Digital communication over fading channels. John Wiley & Sons, vol. 95, 2005.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Zehra Yiğit

Ertuğrul Başar Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2017
Gönderilme Tarihi 27 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 14

Kaynak Göster

APA Yiğit, Z., & Başar, E. (2017). İki Yönlü Dik Uzaysal Modülasyon. EMO Bilimsel Dergi, 7(14), 21-27.
AMA Yiğit Z, Başar E. İki Yönlü Dik Uzaysal Modülasyon. EMO Bilimsel Dergi. Aralık 2017;7(14):21-27.
Chicago Yiğit, Zehra, ve Ertuğrul Başar. “İki Yönlü Dik Uzaysal Modülasyon”. EMO Bilimsel Dergi 7, sy. 14 (Aralık 2017): 21-27.
EndNote Yiğit Z, Başar E (01 Aralık 2017) İki Yönlü Dik Uzaysal Modülasyon. EMO Bilimsel Dergi 7 14 21–27.
IEEE Z. Yiğit ve E. Başar, “İki Yönlü Dik Uzaysal Modülasyon”, EMO Bilimsel Dergi, c. 7, sy. 14, ss. 21–27, 2017.
ISNAD Yiğit, Zehra - Başar, Ertuğrul. “İki Yönlü Dik Uzaysal Modülasyon”. EMO Bilimsel Dergi 7/14 (Aralık 2017), 21-27.
JAMA Yiğit Z, Başar E. İki Yönlü Dik Uzaysal Modülasyon. EMO Bilimsel Dergi. 2017;7:21–27.
MLA Yiğit, Zehra ve Ertuğrul Başar. “İki Yönlü Dik Uzaysal Modülasyon”. EMO Bilimsel Dergi, c. 7, sy. 14, 2017, ss. 21-27.
Vancouver Yiğit Z, Başar E. İki Yönlü Dik Uzaysal Modülasyon. EMO Bilimsel Dergi. 2017;7(14):21-7.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr