Bu çalışmada yüksek çözünürlüklü multispektral uydu görüntülerinden karayolu çıkarımı için yeni bir yöntem önerilmiştir. Önerilen yöntem, literatürde genellikle su ve bitki örtüsünün sınıflandırılması için kullanılan ve spektral bantların oranlanmasıyla elde edilen indisler ile birlikte bölütleme sonuçları üzerinden elde edilen bölütlere ait yapısal özellikleri öznitelik olarak kullanmakta ve ADABOOST gözetimli bir öğrenme algoritmasını bu öznitelikler ile eğitmektedir. Algoritma çeşitli uydu görüntülerinde denenmiş, yol çıkarımında başarılı olduğu gözlemlenmiştir.
Örüntü Tanıma Uzaktan Algılama Uydu Görüntüleri Yol Çıkarımı
In this study, a new method for extracting road mask from high resolution multispectral satellite images is proposed. Proposed method uses indices which are generally utilized for water or vegetation detection in the literature with the structural properties of segments generated by segmentation procedure as features and trains ADABOOST supervised learning algorithm with them. The proposed method is tried on different satellite images and it is observed that the proposed method which is developed using Adaboost learning algorithm is succesful at extracting road networks from satellite images.
Pattern Recognition Remote Sensing Satellite Images Road Extraction
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Özel Sayı Makaleleri (SAVTEK) |
Yazarlar | |
Yayımlanma Tarihi | 9 Nisan 2013 |
Gönderilme Tarihi | 9 Nisan 2013 |
Yayımlandığı Sayı | Yıl 2013 Cilt: 3 Sayı: 5 |
EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr