Tarımsal Otomasyon Sistemleri için Muz Olgunluk Seviyelerinin Derin Öğrenme Yöntemleri İle Sınıflandırılması
Yıl 2023,
Cilt: 13 Sayı: 3, 27 - 34, 18.10.2023
Sezgin Dulkadir
,
Gökhan Koray Gültekin
Öz
Tarımsal üretimde kalite ve verimin artırılması ve maliyetlerin azaltılması için yüksek doğrulukla çalışan otonom sistemlerin kullanımı kaçınılmazdır. Ürün hasatının çok sayıda otonom robot sistemi tarafından farklı olgunluk seviyelerindeki ürünlerin toplanması şeklinde gerçekleştirilebilmesi için ürünlerin olgunluklarının yapay zeka yöntemleriyle tespit edilebilmesi gerekmektedir. Bu çalışmada, çoklu otonom robotik hasat sistemlerinde kullanılmak üzere muz olgunluk seviyelerinin otonom olarak sınıflandırılmasına yönelik iki evrişimsel sinir ağı modeli (YOLOv5s,YOLOv8n) kullanılmıştır. Modeller, 6 sınıflı bir muz olgunluk seviyesi veri seti ile eğitilerek elde edilen test sonuçları yaygın kullanılan ölçütler ile karşılaştırılmıştır.
Kaynakça
- [1]Boz, F. ve Hüseyinli, N. "Türkiye’de Muz Üretimi ve İthalatına Yönelik Bir Tahmin Modellemesi." Uygulamalı
Bilimler Fakültesi Dergisi 1.1-2 (2019): 63-82.
- [2] https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504, 30.12.2022, Erişim tarihi:
06.07.2023
- [3] Phillips, Katherine M., et al. "Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail market." PLoS One 16.7 (2021): e0253366.
- [4] Yap, Min, et al. "The effects of banana ripeness on quality indices for puree production." Lwt 80 (2017): 10-18.
- [5] Gul, Omer Melih, and Aydan Muserref Erkmen. "Energyaware UAV-driven Data Collection with Priority in
Robotic Wireless Sensor Network." IEEE Sensors Journal (2023).
- [6] Mamat, N., Othman, M. F., Abdulghafor, R., Alwan, A. A., & Gulzar, Y. (2023). Enhancing image annotation
technique of fruit classification using a deep learning approach. Sustainability, 15(2), 901.
- [7] Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system
using deep neural networks. sensors, 16(8), 1222.
- [8] Hamidisepehr, A., Mirnezami, S. V., & Ward, J. K. (2020). Comparison of object detection methods for corn damage assessment using deep learning. Transactions of the ASABE, 63(6), 1969-1980.
- [9] Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 3, 100083.
- [10] Dai, M., Dorjoy, M. M. H., Miao, H., & Zhang, S. (2023). A New Pest Detection Method Based on Improved
YOLOv5m. Insects, 14(1), 54.
- [11] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.” https://github.com/ultralytics/, 2023
- [12] Uysal, Fatih, and Metehan Erkan. "Evrişimsel Sinir Ağları Temelli Derin Öğrenme Modelleri Kullanılarak Beyin Tümörü Manyetik Rezonans Görüntülerinin Sınıflandırılması." EMO Bilimsel Dergi 13.2: 19-27.
- [13] İsa, K. O. Ç., et al. "Raylı Sistemlerde Peron Ayırıcı Kapı Sistemi İçin Yapay Sinir Ağı Tabanlı Hata Teşhis
Yaklaşımı." EMO Bilimsel Dergi 13.1: 13-22.
- [14] Redmon, J., et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [15] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster and better learning for bounding box regression,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12993–13000, 2020.
- [16] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang, “Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection,” Advances in Neural Information Processing Systems, vol. 33, pp. 21002–21012, 2020.
- [17] Liu, Bo, and Ryan Bruch. "Weed detection for selective spraying: a review." Current Robotics Reports 1 (2020):19-26.
- [18] Liu, Jun, and Xuewei Wang. "Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network." Frontiers in plant science 11 (2020): 898.
- [19] Sharma, Akhilesh Kumar, et al. "An Approach to Ripening of Pineapple Fruit with Model Yolo V5." 2022 IEEE 7th International conference for Convergence in Technology (I2CT). IEEE, 2022.
- [20] https://universe.roboflow.com/fruit-ripening/bananaripening- process/dataset/2, 15.03.2022, Erişim tarihi:05.07.2023
- [21] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster rcnn: Towards real-time object detection with region
proposal networks. Advances in neural information processing systems, 28.
Classification of Banana Ripeness Levels Using Deep Learning Methods for Agricultural Automation Systems
Yıl 2023,
Cilt: 13 Sayı: 3, 27 - 34, 18.10.2023
Sezgin Dulkadir
,
Gökhan Koray Gültekin
Kaynakça
- [1]Boz, F. ve Hüseyinli, N. "Türkiye’de Muz Üretimi ve İthalatına Yönelik Bir Tahmin Modellemesi." Uygulamalı
Bilimler Fakültesi Dergisi 1.1-2 (2019): 63-82.
- [2] https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504, 30.12.2022, Erişim tarihi:
06.07.2023
- [3] Phillips, Katherine M., et al. "Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail market." PLoS One 16.7 (2021): e0253366.
- [4] Yap, Min, et al. "The effects of banana ripeness on quality indices for puree production." Lwt 80 (2017): 10-18.
- [5] Gul, Omer Melih, and Aydan Muserref Erkmen. "Energyaware UAV-driven Data Collection with Priority in
Robotic Wireless Sensor Network." IEEE Sensors Journal (2023).
- [6] Mamat, N., Othman, M. F., Abdulghafor, R., Alwan, A. A., & Gulzar, Y. (2023). Enhancing image annotation
technique of fruit classification using a deep learning approach. Sustainability, 15(2), 901.
- [7] Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system
using deep neural networks. sensors, 16(8), 1222.
- [8] Hamidisepehr, A., Mirnezami, S. V., & Ward, J. K. (2020). Comparison of object detection methods for corn damage assessment using deep learning. Transactions of the ASABE, 63(6), 1969-1980.
- [9] Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 3, 100083.
- [10] Dai, M., Dorjoy, M. M. H., Miao, H., & Zhang, S. (2023). A New Pest Detection Method Based on Improved
YOLOv5m. Insects, 14(1), 54.
- [11] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.” https://github.com/ultralytics/, 2023
- [12] Uysal, Fatih, and Metehan Erkan. "Evrişimsel Sinir Ağları Temelli Derin Öğrenme Modelleri Kullanılarak Beyin Tümörü Manyetik Rezonans Görüntülerinin Sınıflandırılması." EMO Bilimsel Dergi 13.2: 19-27.
- [13] İsa, K. O. Ç., et al. "Raylı Sistemlerde Peron Ayırıcı Kapı Sistemi İçin Yapay Sinir Ağı Tabanlı Hata Teşhis
Yaklaşımı." EMO Bilimsel Dergi 13.1: 13-22.
- [14] Redmon, J., et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [15] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster and better learning for bounding box regression,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12993–13000, 2020.
- [16] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang, “Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection,” Advances in Neural Information Processing Systems, vol. 33, pp. 21002–21012, 2020.
- [17] Liu, Bo, and Ryan Bruch. "Weed detection for selective spraying: a review." Current Robotics Reports 1 (2020):19-26.
- [18] Liu, Jun, and Xuewei Wang. "Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network." Frontiers in plant science 11 (2020): 898.
- [19] Sharma, Akhilesh Kumar, et al. "An Approach to Ripening of Pineapple Fruit with Model Yolo V5." 2022 IEEE 7th International conference for Convergence in Technology (I2CT). IEEE, 2022.
- [20] https://universe.roboflow.com/fruit-ripening/bananaripening- process/dataset/2, 15.03.2022, Erişim tarihi:05.07.2023
- [21] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster rcnn: Towards real-time object detection with region
proposal networks. Advances in neural information processing systems, 28.