Derleme
BibTex RIS Kaynak Göster

Quantum Key Distribution Protocols and Attack Methods

Yıl 2025, Cilt: 15 Sayı: 1, 97 - 133, 25.01.2025

Öz

Cryptography has always been a sensitive topic, but in the modern world, it has become crucial for secure communication. Recent technological advancements indicate that quantum computers, which could undermine today's cryptographic methods, may emerge in the near future. In this case, traditional cryptographic methods may not be sufficient to ensure secure communication, bringing Post-Quantum Cryptography (PQC) algorithms and Quantum Key Distribution (QKD) systems to the forefront. The security of QKD systems is guaranteed by the laws of nature, rather than traditional cryptographic methods. However, while QKD is theoretically completely secure, current technological limitations mean these systems are not yet completely secure in practice.
In this paper, I present a comprehensive literature review and comparative study on QKD hacking strategies while also discussing the history of cryptography, PQC algorithms, quantum mechanics, QKD protocols, and their application areas.

Kaynakça

  • 1. Singh, S., The code book: the science of secrecy from ancient Egypt to quantum cryptography. 2000: Anchor.zooozoo
  • 2. Yerlikaya, T., E. Buluş, and N. Buluş, Kripto algoritmalarinin gelişimi ve önemi. 2006.
  • 3. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee.
  • 4. Grover, L.K. A fast quantum mechanical algorithm for database search. in STOC '96. 1996.
  • 5. Yan, B., et al., Factoring integers with sublinear resources on a superconducting quantum processor. arXiv preprint arXiv:2212.12372, 2022.
  • 6. Khattar, T. and N. Yosri, A comment on" Factoring integers with sublinear resources on a superconducting quantum processor". arXiv preprint arXiv:2307.09651, 2023.
  • 7. Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510.
  • 8. Zhong, H.-S., et al., Quantum computational advantage using photons. Science, 2020. 370(6523): p. 1460-1463.
  • 9. Chen, L., et al., Report on post-quantum cryptography. Vol. 12. 2016: US Department of Commerce, National Institute of Standards and Technology
  • 10. NIST, C., Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. 2016, NIST Gaithersburg, MD, USA.
  • 11. Alagic, G., et al., Status report on the first round of the NIST post-quantum cryptography standardization process. 2019.
  • 12. Alagic, G., et al., Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST, 2020. 2: p. 69.
  • 13. Alagic, G., et al., Status report on the third round of the NIST post-quantum cryptography standardization process. 2022.
  • 14. Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 1927. 43(3): p. 172-198.
  • 15. Wootters, W.K. and W.H. Zurek, A single quantum cannot be cloned. Nature, 1982. 299(5886): p. 802-803.
  • 16. Einstein, A., B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 1935. 47(10): p. 777-780.
  • 17. Schrödinger, E. Discussion of probability relations between separated systems. in Mathematical Proceedings of the Cambridge Philosophical Society. 1935. Cambridge University Press.
  • 18. Bell, J.S., On the einstein podolsky rosen paradox. Physics Physique Fizika, 1964. 1(3): p. 195.
  • 19. Freedman, S.J. and J.F. Clauser, Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 1972. 28: p. 938-941.
  • 20. Hensen, B., et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015. 526(7575): p. 682-6.
  • 21. Apple. Apple unveils M3, M3 Pro, and M3 Max, the most advanced chips for a personal computer. 2023 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721210117/https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/.
  • 22. Moore, G.E., Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE solid-state circuits society newsletter, 2006. 11(3): p. 33-35.
  • 23. Wiesner, S., Conjugate coding. SIGACT News, 1983. 15(1): p. 78–88.
  • 24. Schumacher, B., Quantum coding. Physical Review A, 1995. 51(4): p. 2738.
  • 25. Dirac, P.A.M. A new notation for quantum mechanics. in Mathematical Proceedings of the Cambridge Philosophical Society. 1939. Cambridge University Press.
  • 26. Wong, T.G., Introduction to Classical and Quantum Computing. 2022: Rooted Grove.
  • 27. Thorlabs. Using the Poincare Sphere to Represent the Polarization State. 2020 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721220956/https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14200.
  • 28. Bennett, C.H., Quantum cryptography using any two nonorthogonal states. Physical review letters, 1992. 68(21): p. 3121.
  • 29. Rabin, M.O., How To Exchange Secrets with Oblivious Transfer. IACR Cryptol. ePrint Arch., 2005. 2005: p. 187.
  • 30. Ekert, A.K., Quantum cryptography based on Bell’s theorem. Physical review letters, 1991. 67(6): p. 661.
  • 31. Bennett, C.H., G. Brassard, and N.D. Mermin, Quantum cryptography without Bell's theorem. Physical Review Letters, 1992. 68(5): p. 557-559.
  • 32. Scarani, V., et al., Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters, 2004. 92(5).
  • 33. Bruß, D., Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters, 1998. 81(14): p. 3018-3021.
  • 34. Zhang, Y., et al., Continuous-variable quantum key distribution system: A review and perspective. arXiv preprint arXiv:2310.04831, 2023.
  • 35. Cao, Y., et al., The evolution of quantum key distribution networks: On the road to the qinternet. IEEE Communications Surveys & Tutorials, 2022. 24(2): p. 839-894.
  • 36. Sharma, P., et al., Quantum key distribution secured optical networks: A survey. IEEE Open Journal of the Communications Society, 2021. 2: p. 2049-2083.
  • 37. Wehner, S., D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead. Science, 2018. 362(6412): p. eaam9288.
  • 38. Azuma, K., et al., Quantum repeaters: From quantum networks to the quantum internet. Reviews of Modern Physics, 2023. 95(4): p. 045006.
  • 39. Adnan, M.H., Z. Ahmad Zukarnain, and N.Z. Harun, Quantum key distribution for 5G networks: A review, State of Art and Future Directions. Future Internet, 2022. 14(3): p. 73.
  • 40. Bennett, C.H. and G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Theoretical computer science, 2014. 560: p. 7-11.
  • 41. Pljonkin, A. Interface of the Quantum Key Distribution System. in WRAP 2017-Workshop on Recent Advances in Photonics. 2018.
  • 42. Tang, Z. Measurement-Device-Independent Quantum Cryptography. 2016.
  • 43. Gottesman, D. and H.-K. Lo, Proof of security of quantum key distribution with two-way classical communications. IEEE Transactions on Information Theory, 2003. 49(2): p. 457-475.
  • 44. Mavroeidis, V., et al., The impact of quantum computing on present cryptography. arXiv preprint arXiv:1804.00200, 2018.
  • 45. Bechmann-Pasquinucci, H. and N. Gisin, Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review A, 1999. 59(6): p. 4238-4248.
  • 46. Wolf, R. and R. Wolf, Quantum key distribution protocols. Quantum Key Distribution: An Introduction with Exercises, 2021: p. 91-116.
  • 47. Hwang, W.-Y., Quantum Key Distribution with High Loss: Toward Global Secure Communication. Physical Review Letters, 2003. 91(5): p. 057901.
  • 48. Zhao, Y., et al., Experimental Quantum Key Distribution with Decoy States. Physical Review Letters, 2006. 96(7): p. 070502.
  • 49. Peng, C.-Z., et al., Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Physical review letters, 2007. 98(1): p. 010505.
  • 50. Mayers, D. and A. Yao. Quantum cryptography with imperfect apparatus. in Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280). 1998. IEEE.
  • 51. Barrett, J., L. Hardy, and A. Kent, No signaling and quantum key distribution. Physical review letters, 2005. 95(1): p. 010503.
  • 52. Acín, A., et al., Device-independent security of quantum cryptography against collective attacks. Physical Review Letters, 2007. 98(23): p. 230501.
  • 53. Biham, E., B. Huttner, and T. Mor, Quantum cryptographic network based on quantum memories. Physical Review A, 1996. 54(4): p. 2651.
  • 54. Inamori, H., Security of practical time-reversed EPR quantum key distribution. Algorithmica, 2002. 34(4): p. 340-365.
  • 55. Lo, H.-K., M. Curty, and B. Qi, Measurement-device-independent quantum key distribution. Physical review letters, 2012. 108(13): p. 130503.
  • 56. Ma, X. and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution. Physical Review A, 2012. 86(6): p. 062319.
  • 57. Liu, Y., et al., Experimental measurement-device-independent quantum key distribution. Physical review letters, 2013. 111(13): p. 130502.
  • 58. Rubenok, A., et al., Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical review letters, 2013. 111(13): p. 130501.
  • 59. Da Silva, T.F., et al., Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013. 88(5): p. 052303.
  • 60. Tang, Z., et al., Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Physical review letters, 2014. 112(19): p. 190503.
  • 61. Liu, Y., et al. Experimental Realization of Measurement Device Independent Quantum Key Distribution. in CLEO: 2013. 2013. San Jose, California: Optica Publishing Group.
  • 62. Kaneda, F., et al., Quantum-memory-assisted multi-photon generation for efficient quantum information processing. Optica, 2017. 4(9): p. 1034-1037.
  • 63. Tang, Y.-L., et al., Measurement-device-independent quantum key distribution over untrustful metropolitan network. Physical Review X, 2016. 6(1): p. 011024.
  • 64. Bloom, S., et al., Understanding the performance of free-space optics. Journal of optical Networking, 2003. 2(6): p. 178-200.
  • 65. Bhaskar, M.K., et al., Experimental demonstration of memory-enhanced quantum communication. Nature, 2020. 580(7801): p. 60-64.
  • 66. Pittaluga, M., et al., 600-km repeater-like quantum communications with dual-band stabilization. Nature Photonics, 2021. 15(7): p. 530-535.
  • 67. Wang, S., et al., Twin-field quantum key distribution over 830-km fibre. Nature Photonics, 2022. 16(2): p. 154-161.
  • 68. Amer, O., V. Garg, and W.O. Krawec, An introduction to practical quantum key distribution. IEEE Aerospace and Electronic Systems Magazine, 2021. 36(3): p. 30-55.
  • 69. Shor, P.W. and J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Physical Review Letters, 2000. 85: p. 441-444.
  • 70. Fuchs, C.A., et al., Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Physical Review A, 1997. 56(2): p. 1163.
  • 71. Herrero-Collantes, M. and J.C. Garcia-Escartin, Quantum random number generators. Reviews of Modern Physics, 2017. 89(1): p. 015004.
  • 72. Stipčević, M. and Ç.K. Koç, True random number generators, in Open Problems in Mathematics and Computational Science. 2014, Springer. p. 275-315.
  • 73. Ma, X., et al., Quantum random number generation. npj Quantum Information, 2016. 2(1): p. 1-9.
  • 74. Mannalatha, V., S. Mishra, and A. Pathak, A comprehensive review of quantum random number generators: Concepts, classification and the origin of randomness. Quantum Information Processing, 2023. 22(12): p. 1-45.
  • 75. Alkassar, A., T. Nicolay, and M. Rohe. Obtaining true-random binary numbers from a weak radioactive source. in International conference on computational science and its applications. 2005. Springer.
  • 76. Schottky, W., Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Annalen der physik, 1918. 362(23): p. 541-567.
  • 77. Nyquist, H., Thermal agitation of electric charge in conductors. Physical review, 1928. 32(1): p. 110.
  • 78. Pironio, S., et al., Random numbers certified by Bell’s theorem. Nature, 2010. 464(7291): p. 1021-1024.
  • 79. Katsoprinakis, G., et al., Quantum random number generator based on spin noise. Physical Review A, 2008. 77(5): p. 054101.
  • 80. Thorlabs. Thorlabs 2024 [cited 2024 21/07]; Available from: https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=9028.
  • 81. Hong, C.-K., Z.-Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Physical review letters, 1987. 59(18): p. 2044.
  • 82. Quantis AIS31 Validated RNG. 2020 [cited 2024 21/07]; Available from: https://web.archive.org/web/20200415092817/https://www.idquantique.com/random-number-generation/products/quantis-ais-31/.
  • 83. Hertz, H., Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik, 1887. 267(8): p. 983-1000.
  • 84. Austin, L. and H. Starke, Ueber die Reflexion der Kathodenstrahlen und eine damit verbundene neue Erscheinung secundärer Emission. Annalen der Physik, 1902. 314(10): p. 271-292.
  • 85. Zworykin, V., G. Morton, and L. Malter, The secondary emission multiplier-a new electronic device. Proceedings of the Institute of Radio Engineers, 1936. 24(3): p. 351-375.
  • 86. Lubsandorzhiev, B.K., On the history of photomultiplier tube invention. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006. 567(1): p. 236-238.
  • 87. Becker, W., Advanced Time-Correlated Single Photon Counting Techniques, ed. A.W. Castleman, J.P. Toennies, and W. Zinth.
  • 88. Ceccarelli, F., et al., Recent advances and future perspectives of single‐photon avalanche diodes for quantum photonics applications. Advanced Quantum Technologies, 2021. 4(2): p. 2000102.
  • 89. Ghioni, M., et al., Progress in silicon single-photon avalanche diodes. IEEE Journal of selected topics in quantum electronics, 2007. 13(4): p. 852-862.
  • 90. Cusini, I., et al., Historical Perspectives, State of art and Research Trends of Single Photon Avalanche Diodes and Their Applications (Part 1: Single Pixels). Frontiers in Physics, 2022: p. 607.
  • 91. Amiri, I., et al., Temperature effects on characteristics and performance of near-infrared wide bandwidth for different avalanche photodiodes structures. Results in Physics, 2019. 14: p. 102399.
  • 92. Gupta, K.M. and N. Gupta, Advanced Semiconducting Materials and Devices. 2016: Springer International Publishing.
  • 93. A. Ghassemi, K.S., K. Kobayashi. MPPC. 2022 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240721204630/https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdf.
  • 94. Cova, S., et al., Avalanche photodiodes and quenching circuits for single-photon detection. Applied optics, 1996. 35(12): p. 1956-1976.
  • 95. Champlin, K.S., Microplasma fluctuations in silicon. Journal of Applied Physics, 1959. 30(7): p. 1039-1050.
  • 96. Haitz, R.H., et al., Avalanche effects in silicon p—n junctions. I. Localized photomultiplication studies on microplasmas. Journal of applied physics, 1963. 34(6): p. 1581-1590.
  • 97. Haitz, R.H., Mechanisms contributing to the noise pulse rate of avalanche diodes. Journal of Applied Physics, 1965. 36(10): p. 3123-3131.
  • 98. Webb, P. and R. McIntyre. Single photon detection with avalanche photodiodes. in Bulletin of the American Physical Society. 1970. AMER INST PHYSICS CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY
  • 99. Webb, P., Properties of avalanche photodiodes. RCA review, 1974. 35: p. 234.
  • 100. Dautet, H., et al., Photon counting techniques with silicon avalanche photodiodes. Applied optics, 1993. 32(21): p. 3894-3900.
  • 101. McIntyre, R.J., Silicon avalanche photodiode with low multiplication noise. 1990, Google Patents.
  • 102. McIntyre, R.J. and P.P. Webb, Low-noise, reach-through, avalanche photodiodes. 1996, Google Patents.
  • 103. Inc, T. InGaAs Photodiodes. 2020 [cited 2024 22/07]; Available from: https://www.thorlabs.com/drawings/1413919b38b38188-92FBBCEE-E338-9094-34937538F04D38EF/APD430C-Manual.pdf.
  • 104. Quantique, I. Photon Counting for Brainies. 2019 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240616084325/https://marketing.idquantique.com/acton/attachment/11868/f-006e/1/-/-/-/-/Photon_counting_for_Brainies.pdf.
  • 105. Itzler, M.A., et al., Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications. Journal of modern optics, 2007. 54(2-3): p. 283-304.
  • 106. Nishida, K., K. Taguchi, and Y. Matsumoto, InGaAsP heterostructure avalanche photodiodes with high avalanche gain. Applied Physics Letters, 1979. 35(3): p. 251-253.
  • 107. Zhang, J., et al., Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications, 2015. 4(5): p. e286-e286.
  • 108. Gottesman, D. and I. Chuang Quantum Digital Signatures. 2001. quant-ph/0105032.
  • 109. Clarke, P.J., et al., Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nature communications, 2012. 3(1): p. 1174.
  • 110. Dunjko, V., P. Wallden, and E. Andersson, Quantum digital signatures without quantum memory. Physical review letters, 2014. 112(4): p. 040502.
  • 111. Collins, R.J., et al., Realization of Quantum Digital Signatures without the Requirement of Quantum Memory. Physical Review Letters, 2014. 113(4): p. 040502.
  • 112. Wallden, P., et al., Quantum digital signatures with quantum-key-distribution components. Physical Review A, 2015. 91(4): p. 042304.
  • 113. Croal, C., et al., Free-space quantum signatures using heterodyne measurements. Physical review letters, 2016. 117(10): p. 100503.
  • 114. Amiri, R., et al., Secure quantum signatures using insecure quantum channels. Physical Review A, 2016. 93(3): p. 032325.
  • 115. Yin, H.-L., Y. Fu, and Z.-B. Chen, Practical quantum digital signature. Physical Review A, 2016. 93(3): p. 032316.
  • 116. Puthoor, I.V., et al., Measurement-device-independent quantum digital signatures. Physical Review A, 2016. 94(2): p. 022328.
  • 117. Roberts, G.L., et al., Experimental measurement-device-independent quantum digital signatures. Nature Communications, 2017. 8(1): p. 1098.
  • 118. Yin, H.-L., et al., Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Physical Review A, 2017. 95(4): p. 042338.
  • 119. Pelet, Y., et al., Unconditionally secure digital signatures implemented in an eight-user quantum network. New journal of physics, 2022. 24(9): p. 093038.
  • 120. Yin, H.-L., et al., Experimental quantum secure network with digital signatures and encryption. National Science Review, 2022. 10(4).
  • 121. Cao, X.-Y., et al., Experimental quantum e-commerce. Science Advances, 2024. 10(2): p. eadk3258.
  • 122. Yin, H.-L., et al., Experimental quantum digital signature over 102 km. Physical Review A, 2017. 95(3): p. 032334.
  • 123. Ding, H.-J., et al., 280-km experimental demonstration of a quantum digital signature with one decoy state. Optics Letters, 2020. 45(7): p. 1711-1714.
  • 124. An, X.-B., et al., Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Optics Letters, 2019. 44(1): p. 139-142.
  • 125. Bennett, C.H. and G. Brassard, Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working]. SIGACT News, 1989. 20(4): p. 78–80.
  • 126. Bennett, C.H., et al., Experimental quantum cryptography. Journal of Cryptology, 1992. 5(1): p. 3-28.
  • 127. Townsend, P.D., J.G. Rarity, and P.R. Tapster, Single photon interference in 10 km long optical fibre interferometer. Electronics Letters, 1993. 29: p. 634-635.
  • 128. Jacobs, B. and J. Franson, Quantum cryptography in free space. Optics Letters, 1996. 21(22): p. 1854-1856.
  • 129. Elliott, C., et al. Current status of the DARPA quantum network. in Quantum Information and computation III. 2005. SPIE.
  • 130. Peev, M., et al., The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 2009. 11(7): p. 075001.
  • 131. Paul, R., Geneva brings quantum cryptography to internet voting. Ars Technica, October, 2007. 12.
  • 132. Sasaki, M., et al., Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 2011. 19(11): p. 10387-10409.
  • 133. Chen, Y.-A., et al., An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 2021. 589(7841): p. 214-219.
  • 134. Chen, T.-Y., et al., Implementation of a 46-node quantum metropolitan area network. npj Quantum Information, 2021. 7(1): p. 134.
  • 135. Nauerth, S., et al., Air-to-ground quantum communication. Nature Photonics, 2013. 7(5): p. 382-386.
  • 136. Wang, J.-Y., et al., Direct and full-scale experimental verifications towards ground–satellite quantum key distribution. Nature Photonics, 2013. 7(5): p. 387-393.
  • 137. Liao, S.-K., et al., Satellite-to-ground quantum key distribution. Nature, 2017. 549(7670): p. 43-47.
  • 138. Yin, J., et al., Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 2020. 582(7813): p. 501-505.
  • 139. Liao, S.-K., et al., Satellite-Relayed Intercontinental Quantum Network. Physical Review Letters, 2018. 120(3): p. 030501.
  • 140. Gibney, E., One giant step for quantum internet. Nature, 2016. 535(7613): p. 478-479.
  • 141. Carmack, D., Beating China in the Race for Quantum Supremacy.
  • 142. Kaur, M., Overview of Quantum Initiatives Worldwide 2023. Qureca. Accessed: Nov, 2023. 16.
  • 143. Heidt, H., et al., CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. 2000.
  • 144. Krebs, G.D. SOCRATES. 2024 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240301095646/https://space.skyrocket.de/doc_sdat/socrates.htm#citation.
  • 145. Takenaka, H., et al., Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nature photonics, 2017. 11(8): p. 502-508.
  • 146. Tang, Z., et al., The photon pair source that survived a rocket explosion. Scientific reports, 2016. 6(1): p. 25603.
  • 147. Chandrasekara, R., et al. Generation and analysis of correlated pairs of photons on board a nanosatellite. in Quantum Information Science and Technology II. 2016. SPIE.
  • 148. Grieve, J.A., et al., SpooQySats: CubeSats to demonstrate quantum key distribution technologies. Acta Astronautica, 2018. 151: p. 103-106.
  • 149. Villar, A., et al., Entanglement demonstration on board a nano-satellite. Optica, 2020. 7(7): p. 734-737.
  • 150. Oi, D.K., et al., CubeSat quantum communications mission. EPJ Quantum Technology, 2017. 4: p. 1-20.
  • 151. Bedington, R., J.M. Arrazola, and A. Ling, Progress in satellite quantum key distribution. npj Quantum Information, 2017. 3(1): p. 30.
  • 152. Sidhu, J.S., et al., Advances in space quantum communications. IET Quantum Communication, 2021. 2(4): p. 182-217.
  • 153. Lu, C.-Y., et al., Micius quantum experiments in space. Reviews of Modern Physics, 2022. 94(3): p. 035001.
  • 154. Jennewein, T., et al., QEYSSat 2.0--White Paper on Satellite-based Quantum Communication Missions in Canada. arXiv preprint arXiv:2306.02481, 2023.
  • 155. Mujumdar, S., V. Bhat, and R. Chatterjee, A brief review of free-space quantum key distribution experiments towards satellite QKD. Asian Journal of Physics Vol, 2022. 31(3-6): p. 577-591.
  • 156. Xu, F., et al., Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020. 92(2): p. 025002.
  • 157. Jain, N., et al., Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 2016. 57(3): p. 366-387.
  • 158. Sun, S. and A. Huang, A review of security evaluation of practical quantum key distribution system. Entropy, 2022. 24(2): p. 260.
  • 159. Brassard, G., et al., Limitations on Practical Quantum Cryptography. Physical Review Letters, 2000. 85(6): p. 1330-1333.
  • 160. Lütkenhaus, N., Security against individual attacks for realistic quantum key distribution. Physical Review A, 2000. 61(5): p. 052304.
  • 161. Félix, S., et al., Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses. Journal of Modern Optics, 2001. 48(13): p. 2009-2021.
  • 162. Gottesman, D., et al. Security of quantum key distribution with imperfect devices. in International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. 2004. IEEE.
  • 163. Liu, W.-T., et al., Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution. Physical Review A, 2011. 83(4): p. 042326.
  • 164. Vakhitov, A., V. Makarov, and D.R. Hjelme, Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of modern optics, 2001. 48(13): p. 2023-2038.
  • 165. Gisin, N., et al., Trojan-horse attacks on quantum-key-distribution systems. Physical Review A, 2006. 73(2): p. 022320.
  • 166. Jain, N., et al., Trojan-horse attacks threaten the security of practical quantum cryptography. New Journal of Physics, 2014. 16(12): p. 123030.
  • 167. Sajeed, S., et al., Invisible Trojan-horse attack. Scientific reports, 2017. 7(1): p. 8403.
  • 168. Stiller, B., et al. Quantum hacking of continuous-variable quantum key distribution systems: realtime Trojan-horse attacks. in 2015 Conference on Lasers and Electro-Optics (CLEO). 2015. IEEE.
  • 169. Muller, A., et al., “Plug and play” systems for quantum cryptography. Applied physics letters, 1997. 70(7): p. 793-795.
  • 170. Stucki, D., et al., Quantum key distribution over 67 km with a plug&play system. New Journal of Physics, 2002. 4(1): p. 41.
  • 171. Sajeed, S., et al., Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Physical Review A, 2015. 91(3): p. 032326.
  • 172. Makarov*, V. and D.R. Hjelme, Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005. 52(5): p. 691-705.
  • 173. Qi, B., et al., Time-shift attack in practical quantum cryptosystems. arXiv preprint quant-ph/0512080, 2005.
  • 174. Zhao, Y., et al., Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 2008. 78(4): p. 042333.
  • 175. Makarov, V., Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009. 11(6): p. 065003.
  • 176. Lydersen, L., et al., Hacking commercial quantum cryptography systems by tailored bright illumination. Nature photonics, 2010. 4(10): p. 686-689.
  • 177. Gerhardt, I., et al., Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature communications, 2011. 2(1): p. 349.
  • 178. Sauge, S., et al., Controlling an actively-quenched single photon detector with bright light. Optics Express, 2011. 19(23): p. 23590-23600.
  • 179. Lydersen, L., et al., Thermal blinding of gated detectors in quantum cryptography. Optics express, 2010. 18(26): p. 27938-27954.
  • 180. Wiechers, C., et al., After-gate attack on a quantum cryptosystem. New Journal of Physics, 2011. 13(1): p. 013043.
  • 181. Gras, G., et al., Optical control of single-photon negative-feedback avalanche diode detector. Journal of Applied Physics, 2020. 127(9).
  • 182. Wu, Z., et al., Hacking single-photon avalanche detectors in quantum key distribution via pulse illumination. Optics Express, 2020. 28(17): p. 25574-25590.
  • 183. Gao, B., et al., Strong pulse illumination hacks self-differencing avalanche photodiode detectors in a high-speed quantum key distribution system. arXiv preprint arXiv:2205.04177, 2022.
  • 184. Lydersen, L., et al., Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New Journal of Physics, 2011. 13(11): p. 113042.
  • 185. Lydersen, L., V. Makarov, and J. Skaar, Secure gated detection scheme for quantum cryptography. Physical Review A, 2011. 83(3): p. 032306.
  • 186. Lydersen, L., et al., Superlinear threshold detectors in quantum cryptography. Physical Review A, 2011. 84(3): p. 032320.
  • 187. Yuan, Z., J.F. Dynes, and A.J. Shields, Avoiding the blinding attack in QKD. Nature Photonics, 2010. 4(12): p. 800-801.
  • 188. Yuan, Z., J. Dynes, and A. Shields, Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Applied physics letters, 2011. 98(23).
  • 189. da Silva, T.F., et al., Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. Optics express, 2012. 20(17): p. 18911-18924.
  • 190. Qian, Y.-J., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system. Optica, 2019. 6(9): p. 1178-1184.
  • 191. Wu, Z., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system: comment. Optica, 2020. 7(10): p. 1391-1393.
  • 192. He, D.-Y., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system: reply. Optica, 2020. 7(10): p. 1415-1416.
  • 193. Acheva, P., et al., Automated verification of countermeasure against detector-control attack in quantum key distribution. EPJ Quantum Technology, 2023. 10(1): p. 1-16.
  • 194. Eisenmann, M. and E. Weidel, Single-mode fused biconical coupler optimized for polarization beamsplitting. Journal of lightwave technology, 1991. 9(7): p. 853-858.
  • 195. Lee, Y., et al., Characteristics of a multi-mode interference device based on Ti: LiNbO 3 channel waveguide. Optics Express, 2009. 17(13): p. 10718-10724.
  • 196. Li, H.-W., et al., Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Physical Review A, 2011. 84(6): p. 062308.
  • 197. Huang, J.-Z., et al., Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Physical Review A, 2013. 87(6): p. 062329.
  • 198. Du, G.-H., et al., Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter. Chinese Physics B, 2019. 28(9): p. 090301.
  • 199. Li, D.-D., et al. Security of optical beam splitter in quantum key distribution. in Photonics. 2022. MDPI.
  • 200. Fung, C.-H.F., et al., Phase-remapping attack in practical quantum-key-distribution systems. Physical Review A, 2007. 75(3): p. 032314.
  • 201. Xu, F., B. Qi, and H.-K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New Journal of Physics, 2010. 12(11): p. 113026.
  • 202. Yariv, A., P. Yeh, and A. Yariv, Photonics: optical electronics in modern communications. Vol. 6. 2007: Oxford university press New York.
  • 203. Bugge, A.N., et al., Laser damage helps the eavesdropper in quantum cryptography. Physical review letters, 2014. 112(7): p. 070503.
  • 204. Makarov, V., et al., Creation of backdoors in quantum communications via laser damage. Physical Review A, 2016. 94(3): p. 030302.
  • 205. Huang, A., et al., Laser-damage attack against optical attenuators in quantum key distribution. Physical Review Applied, 2020. 13(3): p. 034017.
  • 206. Ponosova, A., et al., Protecting fiber-optic quantum key distribution sources against light-injection attacks. PRX Quantum, 2022. 3(4): p. 040307.
  • 207. Todoroki, S.-i. and S. Inoue, Observation of blowing out in low loss passive optical fuse formed in silica glass optical fiber circuit. Japanese journal of applied physics, 2004. 43(6A): p. L728.
  • 208. Bennett, C. Let Eve do the heavy lifting, while John and Won-Young keep her honest. 2011 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721210757/https://dabacon.org/pontiff/2011/10/20/let-eve-do-the-heavy-lifting-while-john-and-won-young-keep-her-honest/.
  • 209. Tang, Y.-L., et al., Source attack of decoy-state quantum key distribution using phase information. Physical Review A, 2013. 88(2): p. 022308.
  • 210. Sun, S.-H., et al., Effect of source tampering in the security of quantum cryptography. Physical Review A, 2015. 92(2): p. 022304.
  • 211. Huang, A., et al., Laser-seeding attack in quantum key distribution. Physical Review Applied, 2019. 12(6): p. 064043.
  • 212. Newman, R., Visible light from a silicon p− n junction. Physical review, 1955. 100(2): p. 700.
  • 213. Chynoweth, A. and K. McKay, Photon emission from avalanche breakdown in silicon. Physical Review, 1956. 102(2): p. 369.
  • 214. Waldschmidt, M. and S. Wittig, Backscattering and bremsstrahlung of electrons in a silicon detector. Nuclear Instruments and Methods, 1968. 64(2): p. 189-191.
  • 215. Lacaita, A., et al., Photon‐assisted avalanche spreading in reach‐through photodiodes. Applied physics letters, 1993. 62(6): p. 606-608.
  • 216. Akil, N., et al., Photon generation by silicon diodes in avalanche breakdown. Applied Physics Letters, 1998. 73(7): p. 871-872.
  • 217. Huang, T., et al., Photon emission characteristics of avalanche photodiodes. Optical Engineering, 2005. 44(7): p. 074001-074001-4.
  • 218. Kurtsiefer, C., et al., The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? Journal of Modern Optics, 2001. 48(13): p. 2039-2047.
  • 219. Meda, A., et al., Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution. Light: Science & Applications, 2017. 6(6): p. e16261-e16261.
  • 220. Pinheiro, P.V.P., et al., Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Optics express, 2018. 26(16): p. 21020-21032.
  • 221. Kim, S., et al. Single trace side channel analysis on quantum key distribution. in 2018 International Conference on Information and Communication Technology Convergence (ICTC). 2018. IEEE. 222. Durak, K., N.C. Jam, and S. Karamzadeh, Attack to quantum cryptosystems through RF fingerprints from photon detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 28(2: Optical Detectors): p. 1-7.

Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri

Yıl 2025, Cilt: 15 Sayı: 1, 97 - 133, 25.01.2025

Öz

Kriptografi, modern dünyada güvenli iletişim için hayati öneme haizdir. Son yıllardaki teknolojik gelişmeler, günümüz kriptografisini tehdit edebilecek kuantum bilgisayarların yakın gelecekte ortaya çıkabileceğini gösterdi. Bu durumda geleneksel kriptografi metotları güvenli iletişimi sağlamada yeterli olamayacağından, Kuantum Sonrası Kriptografi (KSK) algoritmaları ve Kuantum Anahtar Dağıtım (KAD) sistemleri gibi çözümler öne çıkmaktadır. KAD sistemlerinin güvenliği, geleneksel kriptografik metotların aksine doğa yasalarına dayandığından, teoride tamamen güvenli olsa da teknolojik yetersizlikler nedeniyle pratikte henüz tamamen güvenli değil.
Bu derlemede, KAD sistemlerinin güvenliğini tehdit eden saldırı yöntemlerine kapsamlı bir bakış sunulurken, kriptografinin tarihi, KSK algoritmaları, kuantum mekaniği, KAD protokolleri ve uygulama alanları da incelenmiştir.

Kaynakça

  • 1. Singh, S., The code book: the science of secrecy from ancient Egypt to quantum cryptography. 2000: Anchor.zooozoo
  • 2. Yerlikaya, T., E. Buluş, and N. Buluş, Kripto algoritmalarinin gelişimi ve önemi. 2006.
  • 3. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee.
  • 4. Grover, L.K. A fast quantum mechanical algorithm for database search. in STOC '96. 1996.
  • 5. Yan, B., et al., Factoring integers with sublinear resources on a superconducting quantum processor. arXiv preprint arXiv:2212.12372, 2022.
  • 6. Khattar, T. and N. Yosri, A comment on" Factoring integers with sublinear resources on a superconducting quantum processor". arXiv preprint arXiv:2307.09651, 2023.
  • 7. Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510.
  • 8. Zhong, H.-S., et al., Quantum computational advantage using photons. Science, 2020. 370(6523): p. 1460-1463.
  • 9. Chen, L., et al., Report on post-quantum cryptography. Vol. 12. 2016: US Department of Commerce, National Institute of Standards and Technology
  • 10. NIST, C., Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. 2016, NIST Gaithersburg, MD, USA.
  • 11. Alagic, G., et al., Status report on the first round of the NIST post-quantum cryptography standardization process. 2019.
  • 12. Alagic, G., et al., Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST, 2020. 2: p. 69.
  • 13. Alagic, G., et al., Status report on the third round of the NIST post-quantum cryptography standardization process. 2022.
  • 14. Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 1927. 43(3): p. 172-198.
  • 15. Wootters, W.K. and W.H. Zurek, A single quantum cannot be cloned. Nature, 1982. 299(5886): p. 802-803.
  • 16. Einstein, A., B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 1935. 47(10): p. 777-780.
  • 17. Schrödinger, E. Discussion of probability relations between separated systems. in Mathematical Proceedings of the Cambridge Philosophical Society. 1935. Cambridge University Press.
  • 18. Bell, J.S., On the einstein podolsky rosen paradox. Physics Physique Fizika, 1964. 1(3): p. 195.
  • 19. Freedman, S.J. and J.F. Clauser, Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 1972. 28: p. 938-941.
  • 20. Hensen, B., et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015. 526(7575): p. 682-6.
  • 21. Apple. Apple unveils M3, M3 Pro, and M3 Max, the most advanced chips for a personal computer. 2023 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721210117/https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/.
  • 22. Moore, G.E., Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE solid-state circuits society newsletter, 2006. 11(3): p. 33-35.
  • 23. Wiesner, S., Conjugate coding. SIGACT News, 1983. 15(1): p. 78–88.
  • 24. Schumacher, B., Quantum coding. Physical Review A, 1995. 51(4): p. 2738.
  • 25. Dirac, P.A.M. A new notation for quantum mechanics. in Mathematical Proceedings of the Cambridge Philosophical Society. 1939. Cambridge University Press.
  • 26. Wong, T.G., Introduction to Classical and Quantum Computing. 2022: Rooted Grove.
  • 27. Thorlabs. Using the Poincare Sphere to Represent the Polarization State. 2020 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721220956/https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14200.
  • 28. Bennett, C.H., Quantum cryptography using any two nonorthogonal states. Physical review letters, 1992. 68(21): p. 3121.
  • 29. Rabin, M.O., How To Exchange Secrets with Oblivious Transfer. IACR Cryptol. ePrint Arch., 2005. 2005: p. 187.
  • 30. Ekert, A.K., Quantum cryptography based on Bell’s theorem. Physical review letters, 1991. 67(6): p. 661.
  • 31. Bennett, C.H., G. Brassard, and N.D. Mermin, Quantum cryptography without Bell's theorem. Physical Review Letters, 1992. 68(5): p. 557-559.
  • 32. Scarani, V., et al., Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters, 2004. 92(5).
  • 33. Bruß, D., Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters, 1998. 81(14): p. 3018-3021.
  • 34. Zhang, Y., et al., Continuous-variable quantum key distribution system: A review and perspective. arXiv preprint arXiv:2310.04831, 2023.
  • 35. Cao, Y., et al., The evolution of quantum key distribution networks: On the road to the qinternet. IEEE Communications Surveys & Tutorials, 2022. 24(2): p. 839-894.
  • 36. Sharma, P., et al., Quantum key distribution secured optical networks: A survey. IEEE Open Journal of the Communications Society, 2021. 2: p. 2049-2083.
  • 37. Wehner, S., D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead. Science, 2018. 362(6412): p. eaam9288.
  • 38. Azuma, K., et al., Quantum repeaters: From quantum networks to the quantum internet. Reviews of Modern Physics, 2023. 95(4): p. 045006.
  • 39. Adnan, M.H., Z. Ahmad Zukarnain, and N.Z. Harun, Quantum key distribution for 5G networks: A review, State of Art and Future Directions. Future Internet, 2022. 14(3): p. 73.
  • 40. Bennett, C.H. and G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Theoretical computer science, 2014. 560: p. 7-11.
  • 41. Pljonkin, A. Interface of the Quantum Key Distribution System. in WRAP 2017-Workshop on Recent Advances in Photonics. 2018.
  • 42. Tang, Z. Measurement-Device-Independent Quantum Cryptography. 2016.
  • 43. Gottesman, D. and H.-K. Lo, Proof of security of quantum key distribution with two-way classical communications. IEEE Transactions on Information Theory, 2003. 49(2): p. 457-475.
  • 44. Mavroeidis, V., et al., The impact of quantum computing on present cryptography. arXiv preprint arXiv:1804.00200, 2018.
  • 45. Bechmann-Pasquinucci, H. and N. Gisin, Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review A, 1999. 59(6): p. 4238-4248.
  • 46. Wolf, R. and R. Wolf, Quantum key distribution protocols. Quantum Key Distribution: An Introduction with Exercises, 2021: p. 91-116.
  • 47. Hwang, W.-Y., Quantum Key Distribution with High Loss: Toward Global Secure Communication. Physical Review Letters, 2003. 91(5): p. 057901.
  • 48. Zhao, Y., et al., Experimental Quantum Key Distribution with Decoy States. Physical Review Letters, 2006. 96(7): p. 070502.
  • 49. Peng, C.-Z., et al., Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Physical review letters, 2007. 98(1): p. 010505.
  • 50. Mayers, D. and A. Yao. Quantum cryptography with imperfect apparatus. in Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280). 1998. IEEE.
  • 51. Barrett, J., L. Hardy, and A. Kent, No signaling and quantum key distribution. Physical review letters, 2005. 95(1): p. 010503.
  • 52. Acín, A., et al., Device-independent security of quantum cryptography against collective attacks. Physical Review Letters, 2007. 98(23): p. 230501.
  • 53. Biham, E., B. Huttner, and T. Mor, Quantum cryptographic network based on quantum memories. Physical Review A, 1996. 54(4): p. 2651.
  • 54. Inamori, H., Security of practical time-reversed EPR quantum key distribution. Algorithmica, 2002. 34(4): p. 340-365.
  • 55. Lo, H.-K., M. Curty, and B. Qi, Measurement-device-independent quantum key distribution. Physical review letters, 2012. 108(13): p. 130503.
  • 56. Ma, X. and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution. Physical Review A, 2012. 86(6): p. 062319.
  • 57. Liu, Y., et al., Experimental measurement-device-independent quantum key distribution. Physical review letters, 2013. 111(13): p. 130502.
  • 58. Rubenok, A., et al., Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical review letters, 2013. 111(13): p. 130501.
  • 59. Da Silva, T.F., et al., Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013. 88(5): p. 052303.
  • 60. Tang, Z., et al., Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Physical review letters, 2014. 112(19): p. 190503.
  • 61. Liu, Y., et al. Experimental Realization of Measurement Device Independent Quantum Key Distribution. in CLEO: 2013. 2013. San Jose, California: Optica Publishing Group.
  • 62. Kaneda, F., et al., Quantum-memory-assisted multi-photon generation for efficient quantum information processing. Optica, 2017. 4(9): p. 1034-1037.
  • 63. Tang, Y.-L., et al., Measurement-device-independent quantum key distribution over untrustful metropolitan network. Physical Review X, 2016. 6(1): p. 011024.
  • 64. Bloom, S., et al., Understanding the performance of free-space optics. Journal of optical Networking, 2003. 2(6): p. 178-200.
  • 65. Bhaskar, M.K., et al., Experimental demonstration of memory-enhanced quantum communication. Nature, 2020. 580(7801): p. 60-64.
  • 66. Pittaluga, M., et al., 600-km repeater-like quantum communications with dual-band stabilization. Nature Photonics, 2021. 15(7): p. 530-535.
  • 67. Wang, S., et al., Twin-field quantum key distribution over 830-km fibre. Nature Photonics, 2022. 16(2): p. 154-161.
  • 68. Amer, O., V. Garg, and W.O. Krawec, An introduction to practical quantum key distribution. IEEE Aerospace and Electronic Systems Magazine, 2021. 36(3): p. 30-55.
  • 69. Shor, P.W. and J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Physical Review Letters, 2000. 85: p. 441-444.
  • 70. Fuchs, C.A., et al., Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Physical Review A, 1997. 56(2): p. 1163.
  • 71. Herrero-Collantes, M. and J.C. Garcia-Escartin, Quantum random number generators. Reviews of Modern Physics, 2017. 89(1): p. 015004.
  • 72. Stipčević, M. and Ç.K. Koç, True random number generators, in Open Problems in Mathematics and Computational Science. 2014, Springer. p. 275-315.
  • 73. Ma, X., et al., Quantum random number generation. npj Quantum Information, 2016. 2(1): p. 1-9.
  • 74. Mannalatha, V., S. Mishra, and A. Pathak, A comprehensive review of quantum random number generators: Concepts, classification and the origin of randomness. Quantum Information Processing, 2023. 22(12): p. 1-45.
  • 75. Alkassar, A., T. Nicolay, and M. Rohe. Obtaining true-random binary numbers from a weak radioactive source. in International conference on computational science and its applications. 2005. Springer.
  • 76. Schottky, W., Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Annalen der physik, 1918. 362(23): p. 541-567.
  • 77. Nyquist, H., Thermal agitation of electric charge in conductors. Physical review, 1928. 32(1): p. 110.
  • 78. Pironio, S., et al., Random numbers certified by Bell’s theorem. Nature, 2010. 464(7291): p. 1021-1024.
  • 79. Katsoprinakis, G., et al., Quantum random number generator based on spin noise. Physical Review A, 2008. 77(5): p. 054101.
  • 80. Thorlabs. Thorlabs 2024 [cited 2024 21/07]; Available from: https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=9028.
  • 81. Hong, C.-K., Z.-Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Physical review letters, 1987. 59(18): p. 2044.
  • 82. Quantis AIS31 Validated RNG. 2020 [cited 2024 21/07]; Available from: https://web.archive.org/web/20200415092817/https://www.idquantique.com/random-number-generation/products/quantis-ais-31/.
  • 83. Hertz, H., Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik, 1887. 267(8): p. 983-1000.
  • 84. Austin, L. and H. Starke, Ueber die Reflexion der Kathodenstrahlen und eine damit verbundene neue Erscheinung secundärer Emission. Annalen der Physik, 1902. 314(10): p. 271-292.
  • 85. Zworykin, V., G. Morton, and L. Malter, The secondary emission multiplier-a new electronic device. Proceedings of the Institute of Radio Engineers, 1936. 24(3): p. 351-375.
  • 86. Lubsandorzhiev, B.K., On the history of photomultiplier tube invention. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006. 567(1): p. 236-238.
  • 87. Becker, W., Advanced Time-Correlated Single Photon Counting Techniques, ed. A.W. Castleman, J.P. Toennies, and W. Zinth.
  • 88. Ceccarelli, F., et al., Recent advances and future perspectives of single‐photon avalanche diodes for quantum photonics applications. Advanced Quantum Technologies, 2021. 4(2): p. 2000102.
  • 89. Ghioni, M., et al., Progress in silicon single-photon avalanche diodes. IEEE Journal of selected topics in quantum electronics, 2007. 13(4): p. 852-862.
  • 90. Cusini, I., et al., Historical Perspectives, State of art and Research Trends of Single Photon Avalanche Diodes and Their Applications (Part 1: Single Pixels). Frontiers in Physics, 2022: p. 607.
  • 91. Amiri, I., et al., Temperature effects on characteristics and performance of near-infrared wide bandwidth for different avalanche photodiodes structures. Results in Physics, 2019. 14: p. 102399.
  • 92. Gupta, K.M. and N. Gupta, Advanced Semiconducting Materials and Devices. 2016: Springer International Publishing.
  • 93. A. Ghassemi, K.S., K. Kobayashi. MPPC. 2022 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240721204630/https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdf.
  • 94. Cova, S., et al., Avalanche photodiodes and quenching circuits for single-photon detection. Applied optics, 1996. 35(12): p. 1956-1976.
  • 95. Champlin, K.S., Microplasma fluctuations in silicon. Journal of Applied Physics, 1959. 30(7): p. 1039-1050.
  • 96. Haitz, R.H., et al., Avalanche effects in silicon p—n junctions. I. Localized photomultiplication studies on microplasmas. Journal of applied physics, 1963. 34(6): p. 1581-1590.
  • 97. Haitz, R.H., Mechanisms contributing to the noise pulse rate of avalanche diodes. Journal of Applied Physics, 1965. 36(10): p. 3123-3131.
  • 98. Webb, P. and R. McIntyre. Single photon detection with avalanche photodiodes. in Bulletin of the American Physical Society. 1970. AMER INST PHYSICS CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY
  • 99. Webb, P., Properties of avalanche photodiodes. RCA review, 1974. 35: p. 234.
  • 100. Dautet, H., et al., Photon counting techniques with silicon avalanche photodiodes. Applied optics, 1993. 32(21): p. 3894-3900.
  • 101. McIntyre, R.J., Silicon avalanche photodiode with low multiplication noise. 1990, Google Patents.
  • 102. McIntyre, R.J. and P.P. Webb, Low-noise, reach-through, avalanche photodiodes. 1996, Google Patents.
  • 103. Inc, T. InGaAs Photodiodes. 2020 [cited 2024 22/07]; Available from: https://www.thorlabs.com/drawings/1413919b38b38188-92FBBCEE-E338-9094-34937538F04D38EF/APD430C-Manual.pdf.
  • 104. Quantique, I. Photon Counting for Brainies. 2019 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240616084325/https://marketing.idquantique.com/acton/attachment/11868/f-006e/1/-/-/-/-/Photon_counting_for_Brainies.pdf.
  • 105. Itzler, M.A., et al., Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications. Journal of modern optics, 2007. 54(2-3): p. 283-304.
  • 106. Nishida, K., K. Taguchi, and Y. Matsumoto, InGaAsP heterostructure avalanche photodiodes with high avalanche gain. Applied Physics Letters, 1979. 35(3): p. 251-253.
  • 107. Zhang, J., et al., Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications, 2015. 4(5): p. e286-e286.
  • 108. Gottesman, D. and I. Chuang Quantum Digital Signatures. 2001. quant-ph/0105032.
  • 109. Clarke, P.J., et al., Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nature communications, 2012. 3(1): p. 1174.
  • 110. Dunjko, V., P. Wallden, and E. Andersson, Quantum digital signatures without quantum memory. Physical review letters, 2014. 112(4): p. 040502.
  • 111. Collins, R.J., et al., Realization of Quantum Digital Signatures without the Requirement of Quantum Memory. Physical Review Letters, 2014. 113(4): p. 040502.
  • 112. Wallden, P., et al., Quantum digital signatures with quantum-key-distribution components. Physical Review A, 2015. 91(4): p. 042304.
  • 113. Croal, C., et al., Free-space quantum signatures using heterodyne measurements. Physical review letters, 2016. 117(10): p. 100503.
  • 114. Amiri, R., et al., Secure quantum signatures using insecure quantum channels. Physical Review A, 2016. 93(3): p. 032325.
  • 115. Yin, H.-L., Y. Fu, and Z.-B. Chen, Practical quantum digital signature. Physical Review A, 2016. 93(3): p. 032316.
  • 116. Puthoor, I.V., et al., Measurement-device-independent quantum digital signatures. Physical Review A, 2016. 94(2): p. 022328.
  • 117. Roberts, G.L., et al., Experimental measurement-device-independent quantum digital signatures. Nature Communications, 2017. 8(1): p. 1098.
  • 118. Yin, H.-L., et al., Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Physical Review A, 2017. 95(4): p. 042338.
  • 119. Pelet, Y., et al., Unconditionally secure digital signatures implemented in an eight-user quantum network. New journal of physics, 2022. 24(9): p. 093038.
  • 120. Yin, H.-L., et al., Experimental quantum secure network with digital signatures and encryption. National Science Review, 2022. 10(4).
  • 121. Cao, X.-Y., et al., Experimental quantum e-commerce. Science Advances, 2024. 10(2): p. eadk3258.
  • 122. Yin, H.-L., et al., Experimental quantum digital signature over 102 km. Physical Review A, 2017. 95(3): p. 032334.
  • 123. Ding, H.-J., et al., 280-km experimental demonstration of a quantum digital signature with one decoy state. Optics Letters, 2020. 45(7): p. 1711-1714.
  • 124. An, X.-B., et al., Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Optics Letters, 2019. 44(1): p. 139-142.
  • 125. Bennett, C.H. and G. Brassard, Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working]. SIGACT News, 1989. 20(4): p. 78–80.
  • 126. Bennett, C.H., et al., Experimental quantum cryptography. Journal of Cryptology, 1992. 5(1): p. 3-28.
  • 127. Townsend, P.D., J.G. Rarity, and P.R. Tapster, Single photon interference in 10 km long optical fibre interferometer. Electronics Letters, 1993. 29: p. 634-635.
  • 128. Jacobs, B. and J. Franson, Quantum cryptography in free space. Optics Letters, 1996. 21(22): p. 1854-1856.
  • 129. Elliott, C., et al. Current status of the DARPA quantum network. in Quantum Information and computation III. 2005. SPIE.
  • 130. Peev, M., et al., The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 2009. 11(7): p. 075001.
  • 131. Paul, R., Geneva brings quantum cryptography to internet voting. Ars Technica, October, 2007. 12.
  • 132. Sasaki, M., et al., Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 2011. 19(11): p. 10387-10409.
  • 133. Chen, Y.-A., et al., An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 2021. 589(7841): p. 214-219.
  • 134. Chen, T.-Y., et al., Implementation of a 46-node quantum metropolitan area network. npj Quantum Information, 2021. 7(1): p. 134.
  • 135. Nauerth, S., et al., Air-to-ground quantum communication. Nature Photonics, 2013. 7(5): p. 382-386.
  • 136. Wang, J.-Y., et al., Direct and full-scale experimental verifications towards ground–satellite quantum key distribution. Nature Photonics, 2013. 7(5): p. 387-393.
  • 137. Liao, S.-K., et al., Satellite-to-ground quantum key distribution. Nature, 2017. 549(7670): p. 43-47.
  • 138. Yin, J., et al., Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 2020. 582(7813): p. 501-505.
  • 139. Liao, S.-K., et al., Satellite-Relayed Intercontinental Quantum Network. Physical Review Letters, 2018. 120(3): p. 030501.
  • 140. Gibney, E., One giant step for quantum internet. Nature, 2016. 535(7613): p. 478-479.
  • 141. Carmack, D., Beating China in the Race for Quantum Supremacy.
  • 142. Kaur, M., Overview of Quantum Initiatives Worldwide 2023. Qureca. Accessed: Nov, 2023. 16.
  • 143. Heidt, H., et al., CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. 2000.
  • 144. Krebs, G.D. SOCRATES. 2024 [cited 2024 21/07]; Available from: https://web.archive.org/web/20240301095646/https://space.skyrocket.de/doc_sdat/socrates.htm#citation.
  • 145. Takenaka, H., et al., Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nature photonics, 2017. 11(8): p. 502-508.
  • 146. Tang, Z., et al., The photon pair source that survived a rocket explosion. Scientific reports, 2016. 6(1): p. 25603.
  • 147. Chandrasekara, R., et al. Generation and analysis of correlated pairs of photons on board a nanosatellite. in Quantum Information Science and Technology II. 2016. SPIE.
  • 148. Grieve, J.A., et al., SpooQySats: CubeSats to demonstrate quantum key distribution technologies. Acta Astronautica, 2018. 151: p. 103-106.
  • 149. Villar, A., et al., Entanglement demonstration on board a nano-satellite. Optica, 2020. 7(7): p. 734-737.
  • 150. Oi, D.K., et al., CubeSat quantum communications mission. EPJ Quantum Technology, 2017. 4: p. 1-20.
  • 151. Bedington, R., J.M. Arrazola, and A. Ling, Progress in satellite quantum key distribution. npj Quantum Information, 2017. 3(1): p. 30.
  • 152. Sidhu, J.S., et al., Advances in space quantum communications. IET Quantum Communication, 2021. 2(4): p. 182-217.
  • 153. Lu, C.-Y., et al., Micius quantum experiments in space. Reviews of Modern Physics, 2022. 94(3): p. 035001.
  • 154. Jennewein, T., et al., QEYSSat 2.0--White Paper on Satellite-based Quantum Communication Missions in Canada. arXiv preprint arXiv:2306.02481, 2023.
  • 155. Mujumdar, S., V. Bhat, and R. Chatterjee, A brief review of free-space quantum key distribution experiments towards satellite QKD. Asian Journal of Physics Vol, 2022. 31(3-6): p. 577-591.
  • 156. Xu, F., et al., Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020. 92(2): p. 025002.
  • 157. Jain, N., et al., Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 2016. 57(3): p. 366-387.
  • 158. Sun, S. and A. Huang, A review of security evaluation of practical quantum key distribution system. Entropy, 2022. 24(2): p. 260.
  • 159. Brassard, G., et al., Limitations on Practical Quantum Cryptography. Physical Review Letters, 2000. 85(6): p. 1330-1333.
  • 160. Lütkenhaus, N., Security against individual attacks for realistic quantum key distribution. Physical Review A, 2000. 61(5): p. 052304.
  • 161. Félix, S., et al., Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses. Journal of Modern Optics, 2001. 48(13): p. 2009-2021.
  • 162. Gottesman, D., et al. Security of quantum key distribution with imperfect devices. in International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. 2004. IEEE.
  • 163. Liu, W.-T., et al., Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution. Physical Review A, 2011. 83(4): p. 042326.
  • 164. Vakhitov, A., V. Makarov, and D.R. Hjelme, Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of modern optics, 2001. 48(13): p. 2023-2038.
  • 165. Gisin, N., et al., Trojan-horse attacks on quantum-key-distribution systems. Physical Review A, 2006. 73(2): p. 022320.
  • 166. Jain, N., et al., Trojan-horse attacks threaten the security of practical quantum cryptography. New Journal of Physics, 2014. 16(12): p. 123030.
  • 167. Sajeed, S., et al., Invisible Trojan-horse attack. Scientific reports, 2017. 7(1): p. 8403.
  • 168. Stiller, B., et al. Quantum hacking of continuous-variable quantum key distribution systems: realtime Trojan-horse attacks. in 2015 Conference on Lasers and Electro-Optics (CLEO). 2015. IEEE.
  • 169. Muller, A., et al., “Plug and play” systems for quantum cryptography. Applied physics letters, 1997. 70(7): p. 793-795.
  • 170. Stucki, D., et al., Quantum key distribution over 67 km with a plug&play system. New Journal of Physics, 2002. 4(1): p. 41.
  • 171. Sajeed, S., et al., Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Physical Review A, 2015. 91(3): p. 032326.
  • 172. Makarov*, V. and D.R. Hjelme, Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005. 52(5): p. 691-705.
  • 173. Qi, B., et al., Time-shift attack in practical quantum cryptosystems. arXiv preprint quant-ph/0512080, 2005.
  • 174. Zhao, Y., et al., Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 2008. 78(4): p. 042333.
  • 175. Makarov, V., Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009. 11(6): p. 065003.
  • 176. Lydersen, L., et al., Hacking commercial quantum cryptography systems by tailored bright illumination. Nature photonics, 2010. 4(10): p. 686-689.
  • 177. Gerhardt, I., et al., Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature communications, 2011. 2(1): p. 349.
  • 178. Sauge, S., et al., Controlling an actively-quenched single photon detector with bright light. Optics Express, 2011. 19(23): p. 23590-23600.
  • 179. Lydersen, L., et al., Thermal blinding of gated detectors in quantum cryptography. Optics express, 2010. 18(26): p. 27938-27954.
  • 180. Wiechers, C., et al., After-gate attack on a quantum cryptosystem. New Journal of Physics, 2011. 13(1): p. 013043.
  • 181. Gras, G., et al., Optical control of single-photon negative-feedback avalanche diode detector. Journal of Applied Physics, 2020. 127(9).
  • 182. Wu, Z., et al., Hacking single-photon avalanche detectors in quantum key distribution via pulse illumination. Optics Express, 2020. 28(17): p. 25574-25590.
  • 183. Gao, B., et al., Strong pulse illumination hacks self-differencing avalanche photodiode detectors in a high-speed quantum key distribution system. arXiv preprint arXiv:2205.04177, 2022.
  • 184. Lydersen, L., et al., Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New Journal of Physics, 2011. 13(11): p. 113042.
  • 185. Lydersen, L., V. Makarov, and J. Skaar, Secure gated detection scheme for quantum cryptography. Physical Review A, 2011. 83(3): p. 032306.
  • 186. Lydersen, L., et al., Superlinear threshold detectors in quantum cryptography. Physical Review A, 2011. 84(3): p. 032320.
  • 187. Yuan, Z., J.F. Dynes, and A.J. Shields, Avoiding the blinding attack in QKD. Nature Photonics, 2010. 4(12): p. 800-801.
  • 188. Yuan, Z., J. Dynes, and A. Shields, Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Applied physics letters, 2011. 98(23).
  • 189. da Silva, T.F., et al., Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. Optics express, 2012. 20(17): p. 18911-18924.
  • 190. Qian, Y.-J., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system. Optica, 2019. 6(9): p. 1178-1184.
  • 191. Wu, Z., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system: comment. Optica, 2020. 7(10): p. 1391-1393.
  • 192. He, D.-Y., et al., Robust countermeasure against detector control attack in a practical quantum key distribution system: reply. Optica, 2020. 7(10): p. 1415-1416.
  • 193. Acheva, P., et al., Automated verification of countermeasure against detector-control attack in quantum key distribution. EPJ Quantum Technology, 2023. 10(1): p. 1-16.
  • 194. Eisenmann, M. and E. Weidel, Single-mode fused biconical coupler optimized for polarization beamsplitting. Journal of lightwave technology, 1991. 9(7): p. 853-858.
  • 195. Lee, Y., et al., Characteristics of a multi-mode interference device based on Ti: LiNbO 3 channel waveguide. Optics Express, 2009. 17(13): p. 10718-10724.
  • 196. Li, H.-W., et al., Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Physical Review A, 2011. 84(6): p. 062308.
  • 197. Huang, J.-Z., et al., Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Physical Review A, 2013. 87(6): p. 062329.
  • 198. Du, G.-H., et al., Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter. Chinese Physics B, 2019. 28(9): p. 090301.
  • 199. Li, D.-D., et al. Security of optical beam splitter in quantum key distribution. in Photonics. 2022. MDPI.
  • 200. Fung, C.-H.F., et al., Phase-remapping attack in practical quantum-key-distribution systems. Physical Review A, 2007. 75(3): p. 032314.
  • 201. Xu, F., B. Qi, and H.-K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New Journal of Physics, 2010. 12(11): p. 113026.
  • 202. Yariv, A., P. Yeh, and A. Yariv, Photonics: optical electronics in modern communications. Vol. 6. 2007: Oxford university press New York.
  • 203. Bugge, A.N., et al., Laser damage helps the eavesdropper in quantum cryptography. Physical review letters, 2014. 112(7): p. 070503.
  • 204. Makarov, V., et al., Creation of backdoors in quantum communications via laser damage. Physical Review A, 2016. 94(3): p. 030302.
  • 205. Huang, A., et al., Laser-damage attack against optical attenuators in quantum key distribution. Physical Review Applied, 2020. 13(3): p. 034017.
  • 206. Ponosova, A., et al., Protecting fiber-optic quantum key distribution sources against light-injection attacks. PRX Quantum, 2022. 3(4): p. 040307.
  • 207. Todoroki, S.-i. and S. Inoue, Observation of blowing out in low loss passive optical fuse formed in silica glass optical fiber circuit. Japanese journal of applied physics, 2004. 43(6A): p. L728.
  • 208. Bennett, C. Let Eve do the heavy lifting, while John and Won-Young keep her honest. 2011 [cited 2024 22/07]; Available from: https://web.archive.org/web/20240721210757/https://dabacon.org/pontiff/2011/10/20/let-eve-do-the-heavy-lifting-while-john-and-won-young-keep-her-honest/.
  • 209. Tang, Y.-L., et al., Source attack of decoy-state quantum key distribution using phase information. Physical Review A, 2013. 88(2): p. 022308.
  • 210. Sun, S.-H., et al., Effect of source tampering in the security of quantum cryptography. Physical Review A, 2015. 92(2): p. 022304.
  • 211. Huang, A., et al., Laser-seeding attack in quantum key distribution. Physical Review Applied, 2019. 12(6): p. 064043.
  • 212. Newman, R., Visible light from a silicon p− n junction. Physical review, 1955. 100(2): p. 700.
  • 213. Chynoweth, A. and K. McKay, Photon emission from avalanche breakdown in silicon. Physical Review, 1956. 102(2): p. 369.
  • 214. Waldschmidt, M. and S. Wittig, Backscattering and bremsstrahlung of electrons in a silicon detector. Nuclear Instruments and Methods, 1968. 64(2): p. 189-191.
  • 215. Lacaita, A., et al., Photon‐assisted avalanche spreading in reach‐through photodiodes. Applied physics letters, 1993. 62(6): p. 606-608.
  • 216. Akil, N., et al., Photon generation by silicon diodes in avalanche breakdown. Applied Physics Letters, 1998. 73(7): p. 871-872.
  • 217. Huang, T., et al., Photon emission characteristics of avalanche photodiodes. Optical Engineering, 2005. 44(7): p. 074001-074001-4.
  • 218. Kurtsiefer, C., et al., The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? Journal of Modern Optics, 2001. 48(13): p. 2039-2047.
  • 219. Meda, A., et al., Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution. Light: Science & Applications, 2017. 6(6): p. e16261-e16261.
  • 220. Pinheiro, P.V.P., et al., Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Optics express, 2018. 26(16): p. 21020-21032.
  • 221. Kim, S., et al. Single trace side channel analysis on quantum key distribution. in 2018 International Conference on Information and Communication Technology Convergence (ICTC). 2018. IEEE. 222. Durak, K., N.C. Jam, and S. Karamzadeh, Attack to quantum cryptosystems through RF fingerprints from photon detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 28(2: Optical Detectors): p. 1-7.
Toplam 221 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Devreler ve Sistemler
Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Derin Akata

Yayımlanma Tarihi 25 Ocak 2025
Gönderilme Tarihi 22 Temmuz 2024
Kabul Tarihi 22 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Akata, D. (2025). Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri. EMO Bilimsel Dergi, 15(1), 97-133.
AMA Akata D. Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri. EMO Bilimsel Dergi. Ocak 2025;15(1):97-133.
Chicago Akata, Derin. “Kuantum Anahtar Dağıtım Protokolleri Ve Saldırı Yöntemleri”. EMO Bilimsel Dergi 15, sy. 1 (Ocak 2025): 97-133.
EndNote Akata D (01 Ocak 2025) Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri. EMO Bilimsel Dergi 15 1 97–133.
IEEE D. Akata, “Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri”, EMO Bilimsel Dergi, c. 15, sy. 1, ss. 97–133, 2025.
ISNAD Akata, Derin. “Kuantum Anahtar Dağıtım Protokolleri Ve Saldırı Yöntemleri”. EMO Bilimsel Dergi 15/1 (Ocak 2025), 97-133.
JAMA Akata D. Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri. EMO Bilimsel Dergi. 2025;15:97–133.
MLA Akata, Derin. “Kuantum Anahtar Dağıtım Protokolleri Ve Saldırı Yöntemleri”. EMO Bilimsel Dergi, c. 15, sy. 1, 2025, ss. 97-133.
Vancouver Akata D. Kuantum Anahtar Dağıtım Protokolleri ve Saldırı Yöntemleri. EMO Bilimsel Dergi. 2025;15(1):97-133.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr