Araştırma Makalesi
BibTex RIS Kaynak Göster

Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti

Yıl 2025, Cilt: 15 Sayı: 1, 41 - 52, 25.01.2025

Öz

Bu çalışmada, tekrarlanabilir, uygulanabilir ve dielektrik parametrelerdeki değişikliklere duyarlı olan bir mikrodalga sensör önerilmiş, saf zeytinyağında mısır yağının tespiti için özel olarak tasarlanmış ve kapsamlı bir şekilde analiz edilmiştir. Ayrıca bu çalışma önerilen mikrodalga sensörünün hassasiyetini ve performansını arttırmayı amaçlamaktadır. Önerilen sensör 5.055 GHz rezonans frekansında 41.65 dB'lik bir büyüklüğe sahiptir. Numuneler doğrudan sensör üzerine yerleştirilerek sensörün performansı test edilmiştir. Numunelerin ölçülen dielektrik sabitleri, kayıp tanjant değerleri, rezonans frekansları ve \left|S_{11}\right|_{dB} değerlerine göre sonuçların tutarlı olduğu gözlemlenmiştir. Önerilen metamalzeme sensörü, 192.7'lik Q faktörü, %7.25 normalleştirilmiş hassasiyet değeri ve 1203.3 başarım ölçüsü değeri ile literatürde mevcut olan diğer sensörlerle karşılaştırıldığında üstün performans sergilemiştir.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur. Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır.

Teşekkür

Hüseyin Korkmaz, çalışmalarına verdikleri desteklerden dolayı BIDEB 2211/C programı için Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) ve 100/2000 Doktora Bursu programı için Yükseköğretim Kurulu (YÖK)’na teşekkür etmektedir.

Kaynakça

  • [1] F. Göğüş, M. T. Özkaya, and S. Ötleş, ‘Zeytinyağı, Eflatun Yayınevi’. Ankara, 2009.
  • [2] S. B. Osman, O. Korostynka, A. Mason, J. D. Cullen, and A. I. Al-Shamma’a, ‘Application of microwave spectroscopy analysis on determining quality of vegetable oil’, International Journal on Smart Sensing and Intelligent Systems, vol. 7, no. 5, pp. 1–4, 2014.
  • [3] F. D. Gunstone, ‘Production and trade of vegetable oils’, Vegetable oils in food technology: composition, properties and uses, vol. 2, pp. 1–24, 2011.
  • [4] M. Meenu, Q. Cai, and B. Xu, ‘A critical review on analytical techniques to detect adulteration of extra virgin olive oil’, Trends in Food Science & Technology, vol. 91, pp. 391–408, 2019.
  • [5] F. Hashempour-baltork, S. V. Zade, Y. Mazaheri, A. M. Alizadeh, H. Rastegar, Z. Abdian, M. Torbati, S. A. Damirchi, ‘Recent methods in detection of olive oil adulteration: State- of-the-Art’, Journal of Agriculture and Food Research, vol. 16,p. 101123, 2024.
  • [6] L. Menegoz Ursol and S. Moret, ‘Evaluation of the impact of olive milling on the mineral oil contamination of extra- virgin olive oils’, European Journal of Lipid Science and Technology, vol. 126, no. 3, p. 2300123, 2024.
  • [7] M. Islam, L. Bełkowska, P. Konieczny, E. Fornal, and J. Tomaszewska-Gras, ‘Differential scanning calorimetry for authentication of edible fats and oils--What can we learn from the past to face the current challenges?’, Journal of Food and Drug Analysis, vol. 30, no. 2, p. 185, 2022.
  • [8] M. Khursheed, A. Ahmad, S. E. Noor, L. F. García del Moral, V. Martos Núñez, and Others, ‘Chromatographic Techniques for the Detection and Identification of Olive Oil Adulteration’, 2024.
  • [9] H. Yılmaz-Düzyaman, R. de la Rosa, L. Velasco, N. Núñez- Sánchez, and L. León, ‘Oil Quality Prediction in Olive Oil by Near-Infrared Spectroscopy: Applications in Olive Breeding’, Agriculture, vol. 14, no. 5, p. 721, 2024.
  • [10] I. Musa, ‘Investigation the optical properties of Palestinian olive oils for different geographical regions by optical spectroscopy technique’, Food Chemistry Advances, vol. 4, p. 100584, 2024.
  • [11] M. P. Rueda, A. Domínguez-Vidal, E. J. Llorent-Martínez, V. Aranda, and M. J. Ayora-Cañada, ‘Monitoring organic matter transformation of olive oil production residues in a full- scale composting plant by fluorescence spectroscopy’, Environmental Technology & Innovation, p. 103695, 2024.
  • [12] B. Wu, W. Jiang, J. Jiang, Z. Zhao, Y. Tang, W. Zhou, and W. Chen, ‘Wave manipulation in intelligent metamaterials: recent progress and prospects’, Advanced Functional Materials, p. 2316745, 2024.
  • [13] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, ‘Three-dimensional invisibility cloak at optical wavelengths’, science, vol. 328, no. 5976, pp. 337–339, 2010.
  • [14] S. Krödel, N. Thomé, and C. Daraio, ‘Wide band-gap seismic metastructures’, Extreme Mechanics Letters, vol. 4, pp. 111–117, 2015.
  • [15] H. Korkmaz and U. Hasar, ‘Wide band metamaterial absorber with lumped element’, The International Journal of Materials and Engineering Technology, vol. 4, no. 1, pp. 61– 66, 2021.
  • [16] H. Korkmaz, U. C. Hasar, and O. M. Ramahi, ‘Thin-film MXene-based metamaterial absorber design for solar cell applications’, Optical and Quantum Electronics, vol. 55, no. 6, p. 530, 2023.
  • [17] M. Obaidullah, V. Esat, and C. Sabah, ‘Multi-band (9, 4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells’, Optics & Laser Technology, vol. 134, p. 106623, 2021.
  • [18] U. C. Hasar, H. Hasar, H. Ozturk, H. Korkmaz, Y. Kaya, M. A. Ozkaya, A. Ebrahimi, J. J. Barroso, V. Nayyeri, and O. M. Ramahi, ‘Simple and inexpensive microwave setup for industrial based applications: Quantification of flower honey adulteration as a case study’, Scientific Reports, vol. 14, no. 1, p. 8847, 2024.
  • [19] KALİTE. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, and C. Lee, ‘Progress in wearable electronics/photonics— Moving toward the era of artificial intelligence and internet of things’, InfoMat, vol. 2, no. 6, pp. 1131–1162, 2020.
  • [20] R. A. Alahnomi, Z. Zakaria, Z. M. Yussof, A. A. Althuwayb, A. Alhegazi, H. Alsariera, and N. A. Rahman, ‘Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions’, Sensors, vol. 21, no. 7, p. 2267, 2021.
  • [21] P. Mehrotra, B. Chatterjee, and S. Sen, ‘EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing’, Sensors, vol. 19, no. 5, p. 1013, 2019.
  • [22] O. Korostynska, A. Mason, and A. Al-Shamma’a, ‘Microwave sensors for the non-invasive monitoring of industrial and medical applications’, Sensor Review, vol. 34, no. 2, pp. 182–191, 2014.
  • [23] P. Hudec, J. Raboch, M. Randus, K. Hoffmann, A. Holub, M. Svanda, and M. Polivka, ‘Microwave radar sensors for active defense systems’, in 2009 European Radar Conference (EuRAD), 2009, pp. 581–584.
  • [24] E. Nyfors, ‘Industrial microwave sensors—A review’, Subsurface Sensing Technologies and Applications, vol. 1, no. 1, pp. 23–43, 2000.
  • [25] M. H. Bhatti, M. A. Jabbar, M. A. Khan, and Y. Massoud, ‘Low-cost microwave sensor for characterization and adulteration detection in edible oil’, Applied Sciences, vol. 12, no. 17, p. 8665, 2022.
  • [26] M. Bakır, M. Karaaslan, F. Karadag, S. Dalgac, E. Ünal, and O. Akgöl, ‘Metamaterial sensor for transformer oil, and microfluidics’, The Applied Computational Electromagnetics Society Journal (ACES), pp. 799–806, 2019.
  • [27] M. A. Tümkaya, M. Karaaslan, and C. Sabah, ‘Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil’, Bulletin of Materials Science, vol. 41, pp. 1–8, 2018.
  • [28] A. Tamer, F. Ozkan Alkurt, O. Altintas, M. Karaaslan, E. Unal, O. Akgol, F. Karadag, and C. Sabah, ‘Transmission line integrated metamaterial based liquid sensor’, Journal of The Electrochemical Society, vol. 165, no. 7, p. B251, 2018.
  • [29] Y. Lee, S.-J. Kim, H. Park, and B. Lee, ‘Metamaterials and metasurfaces for sensor applications’, Sensors, vol. 17, no. 8, p. 1726, 2017.
  • [30] P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martín, ‘Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids’, IEEE Sensors Journal, vol. 17, no. 20, pp. 6589–6598, 2017.
  • [31] A. A. Mohd Bahar, Z. Zakaria, M. K. Md. Arshad, A. A. M. Isa, Y. Dasril, and R. A. Alahnomi, ‘Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection’, scientific reports, vol. 9, no. 1, p. 5467, 2019.
  • [32] H.-J. Lee and J.-G. Yook, ‘Biosensing using split-ring resonators at microwave regime’, Applied Physics Letters, vol. 92, no. 25, 2008.
  • [33] M. A. Tümkaya, F. Dinçer, M. Karaaslan, and C. Sabah, ‘Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples’, Journal of Electronic Materials, vol. 46, pp. 4955–4962, 2017.
  • [34] M. A. Tümkaya, E. Ünal, and C. Sabah, ‘Metamaterial- based fuel sensor application with three rhombus slots’, International Journal of Modern Physics B, vol. 33, no. 24, p. 1950276, 2019.
  • [35] M. T. Islam, M. R. Islam, M. T. Islam, A. Hoque, and M. Samsuzzaman, ‘Linear regression of sensitivity for meander line parasitic resonator based on ENG metamaterial in the application of sensing’, Journal of Materials Research and Technology, vol. 10, pp. 1103–1121, 2021.
  • [36] Y. I. Abdulkarim, L. Deng, M. Karaaslan, and E. Unal, ‘Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor’, Chemical Physics Letters, vol. 732, p. 136655, 2019. [37] O. Altıntaş, M. Aksoy, and E. Ünal, ‘Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations’, Physica E: Low-dimensional Systems and Nanostructures, vol. 116, p. 113734, 2020.
  • [38] Y. I. Abdulkarim, L. Deng, M. Karaaslan, O. Altıntaş, H.N. Awl, F. F. Muhammadsharif, C. Liao, Emin Unal, and H. Luo, ‘Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line’, Sensors, vol. 20, no. 3, p. 943, 2020.
  • [39] M. A. Khalil, W. H. Yong, M. T. Islam, A. Hoque, Md. S. Islam, C. C. Leei, and M. S. Soliman, ‘Double-negative metamaterial square enclosed QSSR for microwave sensing application in S-band with high sensitivity and Q-factor’, Scientific Reports, vol. 13, no. 1, p. 7373, 2023.
  • [40] O. Altintaş, M. Aksoy, E. Ünal, and M. Karaaslan, ‘Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator’, Journal of The Electrochemical Society, vol. 166, no. 6, p. B482, 2019.
  • [41] A. Tamer, F. Karadağ, E. Ünal, Y. I. Abdulkarim, L. Deng,O. Altintas, M. Bakır, and M. Karaaslan, ‘Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel’, Chemical Physics Letters, vol. 742, p. 137169, 2020.
  • [42] Z. Viskadourakis, A. Theodosi, K. Katsara, M. Sevastaki, G. Fanourakis, O. Tsilipakos, V. M. Papadakis, and G. Kenanakis, “Engraved Split-Ring Resonators as Potential Microwave Sensors for Olive Oil Quality Control,” ACS Applied Electronic Materials, 2024.
  • [43] M.R. Islam, M.T. Islam, A. Hoque, A.S. Alshammari, A. Alzamil, H. Alsaif, M. Samsuzzaman, and M.S. Soliman, “Star enclosed circle split ring resonator-based metamaterial sensor for fuel and oil adulteration detection,” Alexandria Engineering Journal, vol. 67, pp. 547–563, 2023.
  • [44] A.A. Al-Mudhafar and A.M. Ra’ed, High-precise microwave active antenna sensor (MAAS) formulated for sensing liquid properties, Sensors and Actuators A: Physical. 341 (2022) 113567.
  • [45] M. Yıldırım and M. A. Gözel, “asimetrik eş-düzlemsel şerit beslemeli anten ile motor yağ seviye ve kullanım ömrü tespiti.,” SDU Journal of Engineering Sciences & Design/Mühendislik Bilimleri ve Tasarım Dergisi, vol. 11, no. 3, 2023.
  • [46] M. Bakır and İ. Yasar, “Metamalzeme Tabanlı Hassas Süt ve Sıvı Sensörü Uygulaması,” Avrupa Bilim ve Teknoloji Dergisi, pp. 10–16, 2022.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik Elektromanyetiği
Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Hüseyin Korkmaz 0000-0002-3518-1943

Yayımlanma Tarihi 25 Ocak 2025
Gönderilme Tarihi 24 Ağustos 2024
Kabul Tarihi 17 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Korkmaz, H. (2025). Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti. EMO Bilimsel Dergi, 15(1), 41-52.
AMA Korkmaz H. Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti. EMO Bilimsel Dergi. Ocak 2025;15(1):41-52.
Chicago Korkmaz, Hüseyin. “Metamalzeme Tabanlı Hassas Mikrodalga Sensör Ile Zeytinyağındaki Tağşiş Tespiti”. EMO Bilimsel Dergi 15, sy. 1 (Ocak 2025): 41-52.
EndNote Korkmaz H (01 Ocak 2025) Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti. EMO Bilimsel Dergi 15 1 41–52.
IEEE H. Korkmaz, “Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti”, EMO Bilimsel Dergi, c. 15, sy. 1, ss. 41–52, 2025.
ISNAD Korkmaz, Hüseyin. “Metamalzeme Tabanlı Hassas Mikrodalga Sensör Ile Zeytinyağındaki Tağşiş Tespiti”. EMO Bilimsel Dergi 15/1 (Ocak 2025), 41-52.
JAMA Korkmaz H. Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti. EMO Bilimsel Dergi. 2025;15:41–52.
MLA Korkmaz, Hüseyin. “Metamalzeme Tabanlı Hassas Mikrodalga Sensör Ile Zeytinyağındaki Tağşiş Tespiti”. EMO Bilimsel Dergi, c. 15, sy. 1, 2025, ss. 41-52.
Vancouver Korkmaz H. Metamalzeme Tabanlı Hassas Mikrodalga Sensör ile Zeytinyağındaki Tağşiş Tespiti. EMO Bilimsel Dergi. 2025;15(1):41-52.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr