Araştırma Makalesi
BibTex RIS Kaynak Göster

Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi

Yıl 2025, Cilt: 15 Sayı: 1, 143 - 152, 25.01.2025

Öz

Bu çalışmada, tekrarlanabilir, uygulanabilir ve dielektrik parametrelerdeki değişikliklere duyarlılık gösteren bir mikrodalga sensör önerilmiş, özellikle yağlı sütte yağsız süt tağşişinin tespiti amacıyla tasarlanmış ve detaylı bir şekilde incelenmiştir. Önerilen yansıma tabanlı sensör, 5.127 GHz rezonans frekansında 75.09 dB büyüklüğe ulaşan bir performans sergilemektedir. Sensörün performansı, numunelerin doğrudan sensör yüzeyinin tamamını kaplayacak şekilde yerleştirilmesiyle test edilmiştir. Önerilen mikrodalga sensörü, 4882.8 kalite faktörü, %1.56 normalleştirilmiş hassasiyet değeri ve 7617.2 başarım ölçümü ile literatürdeki mevcut sensörlere kıyasla üstün bir performans göstermiştir.

Kaynakça

  • [1] S. Chatterjee, A. Sarkar, and, M. J. Boland, “The world supply of food and the role of dairy protein”, In Milk Proteins, pp. 1–18, 2014.
  • [2] M. Kamthania, J. Saxena, K. Saxena, DK. Sharma, ‘The world supply of food and the role of dairy protein”, Int J Engg Tech Res, vol. 1, no. 15, p. 20, 2014.
  • [3] D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, no. 17, pp. 5706–5727, 2012.
  • [4] P. Singh and N. Gandhi, “Milk preservatives and adulterants: processing, regulatory and safety issues,” Food Rev. Int., vol. 31, no. 3, pp. 236–261, 2015.
  • [5] J. Spink and D. C. Moyer, “Defining the public health threat of food fraud,” J. Food Sci., vol. 76, no. 9, pp. R157–R163, 2011.
  • [6] A. Poonia, A. Jha, R. Sharma, H. B. Singh, A. K. Rai, and N. Sharma, “Detection of adulteration in milk: A review,” Int. J. Dairy Technol., vol. 70, no. 1, pp. 23–42, 2017.
  • [7] A. K. Yadav, M. Gattupalli, K. Dashora, and V. Kumar, “Key milk adulterants in India and their detection techniques: A review,” Food Anal. Methods, vol. 16, no. 3, pp. 499–514, 2023.
  • [8] G. Bordin, F. C. Raposo, B. De la Calle, and A. Rodriguez, “Identification and quantification of major bovine milk proteins by liquid chromatography,” J. Chromatogr. A, vol. 928, no. 1, pp. 63–76, 2001.
  • [9] C. Romero, M. Pardo, M. J. Grillo, R. Diaz, J. Blasco, and I. Lopez-Goñi, “Evaluation of PCR and indirect enzyme-linked immunosorbent assay on milk samples for diagnosis of brucellosis in dairy cattle,” J. Clin. Microbiol., vol. 33, no. 12, pp. 3198–3200, 1995.
  • [10] E. Lipkin, A. Shalom, H. Khatib, M. Soller, and A. Friedmann, “Milk as a source of deoxyribonucleic acid and as a substrate for the polymerase chain reaction,” J. Dairy Sci. vol. 76, no. 7, pp. 2025–2032, 1993.
  • [11] N. Sharma, R. Sharma, Y. S. Rajput, B. Mann, R. Singh, and K. Gandhi, “Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution,” Int. Dairy J., vol. 114, p. 104920, 2021.
  • [12] B. Wu, W. Jiang, J. Jiang, Z. Zhao, Y. Tang, W. Zhou, and W. Chen, ‘Wave manipulation in intelligent metamaterials: recent progress and prospects’, Adv. Funct. Mater., p. 2316745, 2024.
  • [13] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, ‘Three-dimensional invisibility cloak at optical wavelengths’, science, vol. 328, no. 5976, pp. 337–339, 2010.
  • [14] S. Krödel, N. Thomé, and C. Daraio, ‘Wide band-gap seismic metastructures’, Extreme Mech. Lett., vol. 4, pp. 111–117, 2015.
  • [15] H. Korkmaz and U. Hasar, ‘Wide band metamaterial absorber with lumped element’, The Int. J. Mater. Eng. Technol., vol. 4, no. 1, pp. 61–66, 2021.
  • [16] H. Korkmaz, U. C. Hasar, and O. M. Ramahi, ‘Thin-film MXene-based metamaterial absorber design for solar cell applications’, Opt. Quantum Electron., vol. 55, no. 6, p. 530, 2023.
  • [17] M. Obaidullah, V. Esat, and C. Sabah, ‘Multi-band (9, 4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells’, Opt. Laser Technol., vol. 134, p. 106623, 2021.
  • [18] U. C. Hasar, H. Hasar, H. Ozturk, H. Korkmaz, Y. Kaya, M. A. Ozkaya, A. Ebrahimi, J. J. Barroso, V. Nayyeri, and O. M. Ramahi, ‘Simple and inexpensive microwave setup for industrial based applications: Quantification of flower honey adulteration as a case study’, Sci. Rep., vol. 14, no. 1, p. 8847, 2024.
  • [19] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, and C. Lee, ‘Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things’, InfoMat, vol. 2, no. 6, pp. 1131–1162, 2020.
  • [20] R. A. Alahnomi, Z. Zakaria, Z. M. Yussof, A. A. Althuwayb, A. Alhegazi, H. Alsariera, and N. A. Rahman, ‘Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions’, Sensors, vol. 21, no. 7, p. 2267, 2021.
  • [21] P. Mehrotra, B. Chatterjee, and S. Sen, ‘EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing’, Sensors, vol. 19, no. 5, p. 1013, 2019.
  • [22] O. Korostynska, A. Mason, and A. Al-Shamma’a, ‘Microwave sensors for the non-invasive monitoring of industrial and medical applications’, Sens. Rev., vol. 34, no. 2, pp. 182–191, 2014.
  • [23] P. Hudec, J. Raboch, M. Randus, K. Hoffmann, A. Holub, M. Svanda, and M. Polivka, ‘Microwave radar sensors for active defense systems’, in 2009 European Radar Conference (EuRAD), pp. 581–584, 2009. [24] E. Nyfors, ‘Industrial microwave sensors—A review’, Subsurface Sensing Technologies and Applications, vol. 1, no. 1, pp. 23–43, 2000.
  • [25] Q. Liu, W. Guo, and X. Zhu, “Effect of lactose content on dielectric properties of whole milk and skim milk,” Int. J. Food Sci. Technol., vol. 53, no. 9, pp. 2037–2044, 2018.
  • [26] M. Bakır, M. Karaaslan, F. Karadag, S. Dalgac, E. Ünal, and O. Akgöl, ‘Metamaterial sensor for transformer oil, and microfluidics’, The Applied Computational Electromagnetics Society Journal (ACES), pp. 799–806, 2019.
  • [27] M. A. Tümkaya, M. Karaaslan, and C. Sabah, ‘Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil’, Bull. Mater. Sci., vol. 41, pp. 1–8, 2018.
  • [28] A. Tamer, F. Ozkan Alkurt, O. Altintas, M. Karaaslan, E. Unal, O. Akgol, F. Karadag, and C. Sabah, ‘Transmission line integrated metamaterial based liquid sensor’, J. Electrochem. Soc., vol. 165, no. 7, p. B251, 2018.
  • [29] Y. Lee, S.-J. Kim, H. Park, and B. Lee, ‘Metamaterials and metasurfaces for sensor applications’, Sensors, vol. 17, no. 8, p. 1726, 2017.
  • [30] P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martín, ‘Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids’, IEEE Sens. J., vol. 17, no. 20, pp. 6589–6598, 2017.
  • [31] A. A. Mohd Bahar, Z. Zakaria, M. K. Md. Arshad, A. A. M. Isa, Y. Dasril, and R. A. Alahnomi, ‘Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection’, Sci. Rep., vol. 9, no. 1, p. 5467, 2019.
  • [32] H. J. Lee and J. G. Yook, ‘Biosensing using split-ring resonators at microwave regime’, Appl. Phys. Lett., vol. 92, no. 25, 2008.
  • [33] M. A. Tümkaya, F. Dinçer, M. Karaaslan, and C. Sabah, ‘Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples’, J. Electron. Mater., vol. 46, pp. 4955–4962, 2017.
  • [34] M. A. Tümkaya, E. Ünal, and C. Sabah, ‘Metamaterial-based fuel sensor application with three rhombus slots’, Int. J. Mod. Phys. B, vol. 33, no. 24, p. 1950276, 2019.
  • [35] M. T. Islam, M. R. Islam, M. T. Islam, A. Hoque, and M. Samsuzzaman, ‘Linear regression of sensitivity for meander line parasitic resonator based on ENG metamaterial in the application of sensing’, J. Mater. Res. Technol., vol. 10, pp. 1103–1121, 2021.
  • [36] Y. I. Abdulkarim, L. Deng, M. Karaaslan, and E. Unal, ‘Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor’, Chem. Phys. Lett., vol. 732, p. 136655, 2019.
  • [37] O. Altıntaş, M. Aksoy, and E. Ünal, ‘Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations’, Physica E, vol. 116, p. 113734, 2020.
  • [38] Y. I. Abdulkarim, L. Deng, M. Karaaslan, O. Altıntaş, H. N. Awl, F. F. Muhammadsharif, C. Liao, Emin Unal, and H. Luo, ‘Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line’, Sensors, vol. 20, no. 3, p. 943, 2020.
  • [39] M. A. Khalil, W. H. Yong, M. T. Islam, A. Hoque, Md. S. Islam, C. C. Leei, and M. S. Soliman, ‘Double-negative metamaterial square enclosed QSSR for microwave sensing application in S-band with high sensitivity and Q-factor’, Sci. Rep., vol. 13, no. 1, p. 7373, 2023.
  • [40] O. Altintaş, M. Aksoy, E. Ünal, and M. Karaaslan, ‘Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator’, J. Electrochem. Soc., vol. 166, no. 6, p. B482, 2019.
  • [41] A. Tamer, F. Karadağ, E. Ünal, Y. I. Abdulkarim, L. Deng, O. Altintas, M. Bakır, and M. Karaaslan, ‘Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel’, Chem. Phys. Lett., vol. 742, p. 137169, 2020.
  • [42] Z. Viskadourakis, A. Theodosi, K. Katsara, M. Sevastaki, G. Fanourakis, O. Tsilipakos, V. M. Papadakis, and G. Kenanakis, “Engraved Split-Ring Resonators as Potential Microwave Sensors for Olive Oil Quality Control,” ACS Appl. Electron. Mater., 2024.
  • [43] M. R. Islam, M. T. Islam, A. Hoque, A.S. Alshammari, A. Alzamil, H. Alsaif, M. Samsuzzaman, and M.S. Soliman, “Star enclosed circle split ring resonator-based metamaterial sensor for fuel and oil adulteration detection,” Alexandria Eng. J., vol. 67, pp. 547–563, 2023.
  • [44] A. A. Al-Mudhafar and A. M. Ra’ed, “High-precise microwave active antenna sensor (MAAS) formulated for sensing liquid properties,” Sens. Actuators, A, vol. 341, 2022.
  • [45] M. Yıldırım and M. A. Gözel, “Asimetrik eş-düzlemsel şerit beslemeli anten ile motor yağ seviye ve kullanım ömrü tespiti.,” SDU Journal of Engineering Sciences & Design/Mühendislik Bilimleri ve Tasarım Dergisi, vol. 11, no. 3, 2023.
  • [46] M. Bakır and İ. Yasar, “Metamalzeme Tabanlı Hassas Süt ve Sıvı Sensörü Uygulaması,” Avrupa Bilim ve Teknoloji Dergisi, pp. 10–16, 2022.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik Elektromanyetiği
Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Hüseyin Korkmaz 0000-0002-3518-1943

Yayımlanma Tarihi 25 Ocak 2025
Gönderilme Tarihi 19 Aralık 2024
Kabul Tarihi 16 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Korkmaz, H. (2025). Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi. EMO Bilimsel Dergi, 15(1), 143-152.
AMA Korkmaz H. Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi. EMO Bilimsel Dergi. Ocak 2025;15(1):143-152.
Chicago Korkmaz, Hüseyin. “Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi”. EMO Bilimsel Dergi 15, sy. 1 (Ocak 2025): 143-52.
EndNote Korkmaz H (01 Ocak 2025) Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi. EMO Bilimsel Dergi 15 1 143–152.
IEEE H. Korkmaz, “Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi”, EMO Bilimsel Dergi, c. 15, sy. 1, ss. 143–152, 2025.
ISNAD Korkmaz, Hüseyin. “Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi”. EMO Bilimsel Dergi 15/1 (Ocak 2025), 143-152.
JAMA Korkmaz H. Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi. EMO Bilimsel Dergi. 2025;15:143–152.
MLA Korkmaz, Hüseyin. “Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi”. EMO Bilimsel Dergi, c. 15, sy. 1, 2025, ss. 143-52.
Vancouver Korkmaz H. Süt Tağşiş Tespitinde Mikrodalga Sensör Yöntemi. EMO Bilimsel Dergi. 2025;15(1):143-52.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr