Sürdürülebilir Geopolimer Harçların Yaşam Döngüsü ve Mekanik Özelliklerinin Değerlendirilmesi: Farklı Senaryolar Üzerine Bir Çalışma
Yıl 2025,
Cilt: 1 Sayı: 1, 44 - 59, 31.01.2025
Ezgi Örklemez
,
Brial Asif Hayi Paka
,
Ahmet Ceylan
Serhan İlkentapar
,
Uğur Durak
,
Okan Karahan
,
Cengiz Atiş
Öz
Uçucu kül esaslı geopolimer bağlayıcıların mekanik özellikleri inşaat ve yapı sektöründe kullanımı için önem arz etmektedir. Ayrıca inşaat ve yapıda kullanılacak malzemelerin mekanik özelliklerinin yanı sıra iklim değişikliği ile mücadelede Avrupa Yeşil Mutabakatı’nda (European Green Deal) yer alan çevresel hedefler inşaat sektörünü de yakından ilgilendirmektedir. Bu kapsamda bu çalışmada, bağlayıcı olarak F sınıfı uçucu kül kullanılarak üretilen geopolimer numunelerin mekanik özellikleri ve çevresel etkileri üzerinde diatomit ikamesinin etkisi araştırılmıştır. Karışımlarda, bağlayıcı malzeme ağırlıkça %1, %2, %3, %4 ve %5 oranlarında diatomitile ikame edilerek geopolimer harçlar üretilmiştir. Geopolimer numunelere 90°C'de 24, 48 ve 72 saat ısıl kür uygulanmıştır. Geopolimer numuneler üzerinde farklı kür sürelerinde eğilme ve basınç dayanımı deneyleri yapılmıştır. Ayrıca numunelerin mikro yapısını incelemek için diatomit ikameli geopolimer hamurların FESEM görüntüleri incelenmiştir. Elde edilen sonuçlara göre %1, %2 ve %3oranlarındadiatomit içeren harçların eğilme ve basınç dayanımlarında artış olduğu görülmüştür. En yüksek mekanik dayanım sonucu %3 diatomit içeren harçlarda gözlenmiştir. FESEM görüntüleri sonucunda %3 diatomit ikamesi ile üretilen geopolimerin daha yoğun ve kompakt bir mikro yapı sunduğu belirlenmiştir. Ayrıca farklı senaryolara göre diatomit ikameli ve diatomit ikamesiz geopolimer harçların olumlu ve olumsuz çevresel etkileri belirlenmiştir. Sonuç olarak çevreci üretilmek istenen geopolimer harçlara çevresel çıktı olarak etki eden diatomit oranı, aktivatör oranı, aktivatör türü, kür süresi, kür sıcaklıkları ve hammaddeye ulaşım mesafesi gibi faktörlerin görece olumlu ve olumsuz sonuçları irdelenmiştir.
Kaynakça
- [1] H. Liet al., “Sustainable resource opportunity for cane molasses: Use of cane molasses as a grinding aid in the production of Portland cement,” J. Clean. Prod., vol. 93, pp. 56–64, 2015.
- [2]D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009.
- [3]C. L. Sabine et al., “The Oceanic Sink for Anthropogenic CO2,” Science (80-. )., vol. 305, no. July, pp. 5–12, 2004.
- [4]P. S. Deb, P. K. Sarker, and S. Barbhuiya, “Effects of nano-silica on the strength development of geopolymer cured at room temperature,” Constr. Build. Mater., vol. 101, pp. 675–683, 2015.
- [5]S. Saha and C. Rajasekaran, “Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag,” Constr. Build. Mater., vol. 146, pp. 615–620, Aug. 2017.
- [6]İ. İ. Atabey, O. Karahan, C. Bilim, and C. D. Atiş, “The influence of activator type and quantity on the transport properties of class F fly ash geopolymer,” Constr. Build. Mater., vol. 264, 2020.
- [7]A. Awad et al., “Experimental investigation of mechanical properties of geopolymer mortars produced with metakaolin, red mud and glass powder Ashraf,” Comput. Concr., vol. 27, no. 6, p. 597, Jun. 2021.
- [8]Y. G. Adewuyi, “Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation,” ACS Omega, vol. 6, no. 24, pp. 15532–15542, 2021.
- [9]S. Adjei, S. Elkatatny, and K. Ayranci, “Effect of Elevated Temperature on the Microstructure of Metakaolin-Based Geopolymer,” ACS Omega, vol. 7, no. 12, pp. 10268–10276, 2022.
- [10]A. Sathonsaowaphak, P. Chindaprasirt, and K. Pimraksa, “Workability and strength oflignite bottom ash geopolymer mortar,” J. Hazard. Mater., vol. 168, no. 1, pp. 44–50, 2009.
- [11]K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, “NaOH-activated ground fly ash geopolymer cured at ambient temperature,” Fuel, vol. 90, no. 6, pp. 2118–2124, 2011.
- [12]F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture,” Constr. Build. Mater., vol. 22, no. 7, pp. 1315–1322, Jul. 2008.
- [13]A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-activated fly ashes: A cement for the future,” Cem. Concr. Res., vol. 29, no. 8, pp. 1323–1329, Aug. 1999.
- [14]J. C. Swanepoel and C. A. Strydom, “Utilisation of fly ash in a geopolymeric material,” Appl. Geochemistry, vol. 17, no. 8, pp. 1143–1148, Aug. 2002.
- [15]V. F. F. Barbosa, K. J. D. MacKenzie, and C. Thaumaturgo, “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers,” Int. J. Inorg. Mater., vol. 2, no. 4, pp. 309–317, 2000.
- [16]A. R. Brough, M. Holloway, J. Sykes, and A. Atkinson, “Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid,” Cem. Concr. Res., vol. 30, no. 9, pp. 1375–1379, Sep. 2000.
- [17]A. Fahmi, A. B. amini, Y. Marabi, S. R. Zavaragh, and A. Majnouni-Toutakhane, “Effect of Curing Temperature on the Mechanical Strength of Alkali Activated Laterite Geopolymeric Samples,” J. Eng. Res., pp. 1–25, 2021.
- [18]T. Bakharev, “Geopolymeric materials prepared using Class F fly ash and elevated temperature curing,” Cem. Concr. Res., vol. 35, no. 6, pp. 1224–1232, Jun. 2005.
- [19]D. Panias, I. P. Giannopoulou, and T. Perraki, “Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 301, no. 1–3, pp. 246–254, 2007.
- [20]P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon, “Workability and strength of coarse high calcium fly ash geopolymer,” Cem. Concr. Compos., vol. 29, no. 3, pp. 224–229, 2007.
- [21]O. A. A. Ali, “Mechanical Properties of Fly Ash Based Geopolymer Mortar Activated By Alkali and Cement Simultaneously,” Erciyes Universty,Graduate School of Natural and Applied Sciences, 2017.
- [22]F. Puertas, S. Martínez-Ramírez, S. Alonso, and T. Vázquez, “Alkali-activated fly ash/slag cements. Strength behaviour and hydration products,” Cem. Concr. Res., vol. 30, no. 10, pp. 1625–1632, 2000.
- [23]Z. Sun and A. Vollpracht, “Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag,” Cem. Concr. Res., vol. 103, no. September 2017, pp. 110–122, 2018.
- [24]B. Galzerano et al., “Design of sustainable porous materials based on 3D-structured silica exoskeletons , Diatomite : Chemico-physical and functional properties,” Mater. Des., vol. 145, pp. 196–204, 2018.
- [25]C. Bagci, G. P. Kutyla, and W. M. Kriven, “Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative,” Ceram. Int., vol. 43, no. 17, pp. 14784–14790, 2017.
- [26]T. Sinsiri, T. Phoo-ngernkham, N. Ratchasima, and V. Sata, “The effects of replacement fly ash with diatomite in geopolymer mortar,” Comput. Concr., vol. 9, no. 6, pp. 427–439, 2012.
- [27]M. Sciences, T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, and T. Sinsiri, “High calcium fly ash geopolymer containing diatomite as additive,” Indian J. Eng. Mater. Sci., vol. 20, no. August, pp. 310–318, 2013.
- [28]P. Posi, S. Lertnimoolchai, V. Sata, and T. Phoo-ngernkham, “Investigation of Properties of Lightweight Concrete with Calcined Diatomite Aggregate,” vol. 18, pp. 1429–1435, 2014.
- [29]Y. C. Ersan, S. Gulcimen, T. N. Imis, O. Saygin, and N. Uzal, “Life cycle assessment of lightweight concrete containing recycled plastics and fly ash,” Eur. J. Environ. Civ. Eng., vol. 26, no. 7, pp. 2722–2735, 2022.
- [30]A. Josa, A. Aguado, A. Cardim, and E. Byars, “Comparative analysis of the life cycle impact assessment of available cement inventories in the EU,” Cem. Concr. Res., vol. 37, no. 5, pp. 781–788, 2007.
- [31]ISO-14040, Environmental management–life cycle assessment-Principles and framework. International Organization for Standardization, 2006.
- [32]P. S. Matheu, K. Ellis, and B. Varela, “Comparing the environmental impacts of alkali activated mortar and traditional portland cement mortar using life cycle assessment,” IOP Conf. Ser. Mater. Sci. Eng., vol. 96, no. 1, 2015.
- [33]L. Nguyen, A. J. Moseson, Y. Farnam, and S. Spatari, “Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders.,” J. Clean. Prod., vol. 185, pp. 628–645, 2018.
- [34]R. Robayo-Salazar, J. Mejía-Arcila, R. Mejía de Gutiérrez, and E. Martínez, “Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete,” Constr. Build. Mater., vol. 176, pp. 103–111, Jul. 2018.
- [35]A. Passuello et al., “Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators,” J. Clean. Prod., vol. 166, pp. 680–689, 2017.
- [36]B. C. McLellan, R. P. Williams, J. Lay, A. Van Riessen, and G. D. Corder, “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement,” J. Clean. Prod., vol. 19, no. 9–10, pp. 1080–1090, 2011.
- [37]TS EN 196-1, “Method of testing cement, Part 1.Determinationof strength.” Turkish Standards Institution, Ankara, 2009.
- [38]TSE, “TS EN ISO 14044 standardı, Çevre yo netimi-Hayat boyu deg erlendirme-Gerekler ve kılavuz,” 2007.
- [39]C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. Ilkentapar, and E. Luga, “Very high strength (120MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration,” Constr. Build. Mater., vol. 96, pp. 673–678, Oct. 2015.
- [40]G. Görhan and G. Kürklü, “The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures,” Compos. Part B Eng., vol. 58, pp. 371–377, 2014.
- [41]Messina, Ferone, F. Colangelo, Roviello, and Cioffi, “Alkali activated waste fly ash as sustainable composite: Influence ofcuring and pozzolanic admixtures on the early-age physico-mechanical properties and residual strength after exposure at elevated temperature,” Compos. Part B Eng., vol. 132, pp. 161–169, Jan. 2018.
- [42]U. Durak, O. Karahan, B. Uzal, S. İlkentapar, and C. D. Atiş, “Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer,” Struct. Concr., vol. 22, no. S1, pp. E352–E367, Jan. 2021.
- [43]J. E. Oh, P. J. M. Monteiro, S. S. Jun, S. Choi, and S. M. Clark, “The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers,” Cem. Concr. Res., vol. 40, no. 2, pp. 189–196, 2010.
- [44]E. D. Rodríguez, S. A. Bernal, J. L. Provis, J. Paya, J. M. Monzo, and M. V. Borrachero, “Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder,” Cem. Concr. Compos., vol. 35, no. 1, pp. 1–11, 2013.
- [45]J. L. Provis and S. A. Bernal, “Geopolymers and Related Alkali-Activated Materials,” Annu. Rev. Mater. Res., vol. 44, no. 1, pp. 299–327, 2014.
- [46]P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, “Geopolymer technology: The current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, 2007.
- [47]D. Khale and R. Chaudhary, “Mechanism of geopolymerization and factors influencing its development: A review,” J. Mater. Sci., vol. 42, no. 3, pp. 729–746, 2007.
- [48]A. Kul et al., “Characterization and life cycle assessment of geopolymer mortars with masonry units and recycled concrete aggregatesassorted from construction and demolition waste,” J. Build. Eng., vol. 78, p. 107546, Nov. 2023.
- [49]Q. Munir, M. Abdulkareem, M. Horttanainen, and T. Kärki, “A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete,” Sci. Total Environ., vol. 865, p. 161230, Mar. 2023.
- [50]B. Gopalakrishna and P. Dinakar, “Life cycle assessment (LCA) and the influence of alkaline activator content on mechanical and microstructural properties of geopolymer mortar,” J. Eng. Res., Jan. 2024.
- [51]B. Kanagaraj, N. Anand, U. Johnson Alengaram, and R. Samuvel Raj, “Engineering properties, sustainability performance and life cycle assessment of high strength self-compacting geopolymer concrete composites,” Constr. Build. Mater., vol. 388, p. 131613, Jul. 2023.
- [52]R. Bajpai, K. Choudhary, A. Srivastava, K. S. Sangwan, and M. Singh, “Environmental impact assessment of fly ash and silica fume based geopolymer concrete,” J. Clean. Prod., vol. 254, p. 120147, 2020.
- [53]A. Petek Gursel, E. Masanet, A. Horvath, and A. Stadel, “Life-cycle inventory analysis of concrete production: A critical review,” Cem. Concr. Compos., vol. 51, pp. 38–48, Aug. 2014.
- [54]C. Li, J. Li, Q. Ren, Q. Zheng, and Z. Jiang, “Durability of concrete coupled with life cycle assessment: Review and perspective,” Cem. Concr. Compos., vol. 139, p. 105041, May 2023.
- [55]F. Schorcht, N. Kourti, B. M. Scalet, S. Roudier, and L. D. Sancho, BAT reference cement productie. 2013.