Derleme
BibTex RIS Kaynak Göster

Çağdaş Ahşap Mimarisinin Evrimi: Teknoloji ve Sürdürülebilirlik Üzerine Bir İnceleme

Yıl 2025, Cilt: 4 Sayı: 2, 105 - 120, 31.12.2025

Öz

Ahşap, doğal olarak yenilenebilir yapısı, üretim sürecindeki düşük enerji gereksinimi ve karbon tutma kapasitesi sayesinde son yıllarda sürdürülebilir mimarinin odak noktalarından biri haline gelmiştir. Geleneksel olarak düşük katlı yapılarda kullanılan bu malzeme, gelişen mühendislik teknikleri sayesinde artık çok katlı kentsel yapılar için de geçerli bir seçenek oluşturmaktadır. Bu çalışma, çağdaş ahşap mimarisinin teknolojik ve düzenleyici boyutlarıyla nasıl evrildiğini incelemekte ve bu dönüşümün özellikle CLT (Çapraz Lamine Ahşap), LVL (Lamine Kaplama Kereste) ve GLT (Yapıştırılmış Lamine Ahşap) gibi ileri mühendislik ürünü ahşap malzemelerin yaygınlaşmasıyla nasıl ivme kazandığını değerlendirmektedir. Araştırma, nitel yöntem çerçevesinde yürütülmüş; literatür taraması ve karşılaştırmalı örnek olay analizi yoluyla Avrupa, Kuzey Amerika ve Asya'dan seçilen öncü nitelikteki çok katlı ahşap yapılar mercek altına alınmıştır. Bu yapıların seçimi, hem malzeme teknolojisi açısından yenilikçi olmaları hem de ilgili ülkelerdeki yapı yönetmeliklerinde önemli dönüşümleri tetiklemiş olmaları kriterlerine dayanmaktadır. Elde edilen bulgular, çağdaş ahşap yapıların yalnızca yapısal performans ve yangın güvenliği gibi teknik kriterler doğrultusunda değil, aynı zamanda karbon nötr politikaları ve yeşil bina sertifikasyon sistemleriyle bütünleşik şekilde şekillendiğini ortaya koymaktadır. Ayrıca araştırma, mevcut yapı standartlarının esnetilmesi veya yeniden yazılması sürecinin, teknolojik ilerlemeyle paralel yürütülmesinin, bu tür yapıların uygulanabilirliğini doğrudan etkilediğini göstermektedir. Sonuç olarak, çok katlı ahşap yapıların yaygınlaşabilmesi için yalnızca malzeme teknolojilerindeki ilerlemelerin yeterli olmadığı; bunun yanında yapı mevzuatlarının da çevresel hedeflerle uyumlu şekilde yeniden yapılandırılması gerektiği ortaya konulmuştur. Türkiye gibi yapı sektöründe dönüşüm arayışında olan gelişmekte olan ülkeler için bu analiz, ahşabın sürdürülebilir kentsel gelişime nasıl katkı sağlayabileceğine ilişkin somut ve uygulanabilir perspektifler sunmaktadır.

Kaynakça

  • 4B. (2022). Renggli ve 4B arasındaki 30 yıllık işbirliği. https://www.4-b.ch/de/blog/30-jahre-zusammenarbeit-zwischen-renggli-und-4b/
  • Akkaya, M., Şahin, H., & Erkan, H. (2021). Türkiye’de ithal odun hammaddesiyle ilişkili orman endüstri işletmelerinin genel yapısı. Turkish Journal of Forest Science, 5(2), 89–100.
  • Almeida, L., Silva, A., Veiga, R., Mirão, J., Vieira, M. (2021). 20th-century award-winning buildings in Lisbon (Portugal): Study of plasters, rendering, and concrete materials aiming their sustainable preservation. Buildings, 11(8), 359. https://doi.org/10.3390/buildings11080359
  • Araújo, V., Cortez-Barbosa, J., Gava, M., Garcia, J., Souza, A., Savi, A., …, Lahr, F. (2016). Classification of wooden housing building systems. Bioresources, 11(3). https://doi.org/10.15376/biores.11.3.dearaujo
  • Bajno, D., Grzybowska, A., Bednarz, Ł. (2021). Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies, 14(18), 5975. https://doi.org/10.3390/en14185975
  • Bartha, B., Olărescu, A. M. (2020). Neo-vernacular concepts for value-adding in contemporary European architecture and design. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, Agricultural Food Engineering, 13(62), 2. https://doi.org/10.31926/but.fwiafe.2020.13.62.2.6
  • Başoğlu, H. (2016). 29293989120 [Photograph]. Flickr. Retrieved January 28, 2025, from https://www.flickr.com/photos/huseyinbasaoglu/29293989120
  • Berglund, L., Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Advanced Materials, 30(19). https://doi.org/10.1002/adma.201704285
  • Blay-Armah, A. (2023). Evaluation of embodied carbon emissions in UK supermarket constructions: A study on steel, brick, and timber frameworks with consideration of end-of-life processes. Sustainability, 15(20), 14978. https://doi.org/10.3390/su152014978
  • Bowyer, J. L., Shmulsky, R., Haygreen, J. G. (2012). Forest products and wood science: An introduction. Wiley-Blackwell.
  • Cheng, C., Chow, C., Yue, T., Ng, Y., Chow, W. (2022). Smoke hazards of tall timber buildings with new products. Encyclopedia, 2(1), 593–601. https://doi.org/10.3390/encyclopedia2010039
  • Çalışkan, H., Yıldırım, E., & Yılmaz, B. (2024). Forest management in Türkiye: Economic pressures, legal frameworks, and ecological consequences. International Environmental Agreements: Politics, Law and Economics, Advance online publication.
  • Dang, H. W. (2023). Using sustainable timber in architecture in Vietnam, E3S Web of Conferences 403, 02001, https://doi.org/10.1051/e3sconf/202340302001
  • Evison, D., Kremer, P., Guiver, J. (2018). Mass timber construction in Australia and New Zealand—Status, and economic and environmental influences on adoption. Wood and Fiber Science, 50(Special), 128–138. https://doi.org/10.22382/wfs-2018-046
  • Fan, J., Chen, L., Zhang, D., Nie, H., Mao, A., Yang, L., …, Yuan, Y. (2020). Study on environment and carbon sequestration effect of wood structure building based on sustainable development. American Journal of Environmental Science and Engineering, 4(4), 65. https://doi.org/10.11648/j.ajese.20200404.13
  • Fang, D., Mueller, C. (2021). Mortise-and-tenon joinery for modern timber construction: Quantifying the embodied carbon of an alternative structural connection. Architecture Structures and Construction, 3(1), 11–24. https://doi.org/10.1007/s44150-021-00018-5
  • Giedion, S. (1967). Space, time and architecture: The growth of a new tradition. Harvard University Press.
  • Giménez, V., Avila, J. (2022). Timber buildings: A sustainable construction alternative. VibrArch 2022 Proceedings. https://doi.org/10.4995/vibrarch2022.2022.15307
  • Goldhahn, C., Cabane, E., Chanana, M. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2206). https://doi.org/10.1098/rsta.2020.0339
  • Gustavsson, L., Sathre, R. (2010). Energy and CO2 analysis of wood substitution in construction. Climatic Change, 105(1–2), 129–153. https://doi.org/10.1007/s10584-010-9876-8
  • Hadi, Y., Hermawan, D., Abdillah, I., Mubarok, M., Arsyad, W., Pari, R. (2022). Polystyrene-impregnated glulam resistance to subterranean termite attacks in a laboratory test. Polymers, 14(19), 4003. https://doi.org/10.3390/polym14194003
  • He, M., Luo, J., Zheng, L. (2017). Key technologies for prefabricated timber buildings. Modular and Offsite Construction (MOC) Summit Proceedings. https://doi.org/10.29173/mocs62
  • Hoadley, R. B. (2000). Understanding wood: A craftsman’s guide to wood technology. Taunton Press. Hoyos, C. M., Haglund, B. (2020). Wood+: Strategies for a Material Shift in Architectural Design, 2020 AIA/ACSA Intersections Research Conference: CARBON, 166-172.
  • Ilgın, E., Karjalainen, M. (2021). Preliminary design proposals for dovetail wood board elements in multi-story building construction. Architecture, 1(1), 56–68. https://doi.org/10.3390/architecture1010006
  • Ilgın, H., Karjalainen, M. (2023). Massive wood construction in Finland: Past, present, and future. In IntechOpen. https://doi.org/10.5772/intechopen.104979
  • Ilgın, H., Karjalainen, M., Koponen, O. (2022). Review of the current state-of-the-art of dovetail massive wood elements. In IntechOpen. https://doi.org/10.5772/intechopen.99090
  • Ji, M., Zhang, W., Diao, X., Wang, G., Hu, M. (2023). Intelligent automation manufacturing for Betula solid timber based on machine vision detection and optimization grading system applied to building materials. Forests, 14(7), 1510. https://doi.org/10.3390/f14071510
  • Jian, H., Liang, Y., Deng, C., Xu, J., Liu, Y., Shi, J., …, Park, H. (2023). Research progress on the improvement of flame retardancy, hydrophobicity, and antibacterial properties of wood surfaces. Polymers, 15(4), 951. https://doi.org/10.3390/polym15040951
  • Kim, J. (2023). Architectural robotic morphology. https://doi.org/10.32920/23556957
  • Konstantinavičienė, J. (2023). Assessment of potential of forest wood biomass in terms of sustainable development. Sustainability, 15(18), 13871. https://doi.org/10.3390/su151813871
  • Kremer, P., Symmons, M. (2015). Mass timber construction as an alternative to concrete and steel in the Australian building industry: A PESTEL evaluation of the potential. International Wood Products Journal, 6(3), 138–147. https://doi.org/10.1179/2042645315y.0000000010
  • Krutasov, B. V., Ylesin, M. A., Mashin, N. A., Dubrov, D. V. (2018). Hydrophobic modifiers for restoration of old wooden buildings in western siberia. Key Engineering Materials, 771, 43-48.
  • Kuittinen, M. (2023). Building within planetary boundaries: Moving construction to stewardship. Buildings and Cities, 4(1), 565–574. https://doi.org/10.5334/bc.351
  • Lestari, A., Hadi, Y., Hermawan, D., Santoso, A. (2015). Glulam properties of fast-growing species using mahogany tannin adhesive. Bioresources, 10(4). https://doi.org/10.15376/biores.10.4.7419-7433
  • Li, D., Zhang, Z., Wang, B., Yang, C., Deng, L. (2022). Detection method of timber defects based on target detection algorithm, Measurement 203-111937, https://doi.org/10.1016/j.measurement.2022.111937
  • Liao, Y., Tu, D., Zhou, H., Yun, H., Hu, C. (2017). Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Construction and Building Materials, 132, 508–515.
  • Mascarenhas, F., Dias, A., Christofóro, A., Simões, R. (2023). Microwave technology and its applications to wood treatment and modification. https://doi.org/10.52202/069179-0005 Materialepyramiden. (2019). Materialepyramiden. Son erişim tarihi: 28/01/2025, https://www.materialepyramiden.dk/
  • Mercader-Moyano, P., Serrano-Jiménez, A. (2021). Special issue “Urban and buildings regeneration strategy to climatic change mitigation, energy, and social poverty after a world health and economic global crisis.” Sustainability, 13(21), 11850. https://doi.org/10.3390/su132111850
  • Nabaei, S., Weinand, Y. (2011). Geometrical description and structural analysis of a modular timber structure. International Journal of Space Structures, 26(4), 321–330. https://doi.org/10.1260/0266-3511.26.4.321
  • Naturally Wood. (2024). Brock Commons Tallwood House. Erişim adresi: https://www.naturallywood.com/projects/brock-commons-tallwood-house/
  • Nouri, F., Bradford, M., Valipour, H. (2018). Experimental study of timber–timber composite members. https://doi.org/10.2495/hpsm180091
  • Nyrud, A., Bringslimark, T., Bysheim, K. (2013). Benefits from wood interior in a hospital room: A preference study. Architectural Science Review, 57(2), 125–131. https://doi.org/10.1080/00038628.2013.816933
  • Okan, T., Köse, N., Arifoğlu, E., Köse, C. (2016). Assessing Ecotourism Potential of Traditional Wooden Architecture in Rural Areas: The Case of Papart Valley. Sustainability, 8(10), 974. https://doi.org/10.3390/su8100974
  • Piccardo, C., Alam, A., Hughes, M. (2021). The potential contribution of wood in green building certifications. Architectural Research in Finland, 5(1). https://doi.org/10.37457/arf.113262
  • Redhwi, H., Siddiqui, M., Andrady, A., Furquan, S., Hussain, S. (2023). Durability of high-density polyethylene (HDPE)- and polypropylene (PP)-based wood-plastic composites—Part 1: Mechanical properties of the composite materials. Journal of Composites Science, 7(4), 163. https://doi.org/10.3390/jcs7040163
  • Roos, A., Woxblom, L., McCluskey, D. (2010). The influence of architects and structural engineers on timber in construction – Perceptions and roles. Silva Fennica, 44(5). https://doi.org/10.14214/sf.126
  • Ryoo, S. L., Youn, H. C. (2019). The Evolutionary Use of Curved Wood in Korean Traditional Architecture. Sustainability, 11(23), 6557. https://doi.org/10.3390/su11236557
  • Schuetze, T. (2018). Wood Constructions for Sustainable Building Renovation. Advanced Materials Research, 1150, 67–72. https://doi.org/10.4028/www.scientific.net/amr.1150.67
  • Serengil, Y. (2023). The roadmap to achieving climate neutrality in Türkiye: A comprehensive analysis of long-term forestry strategies. In Proceedings of the 3rd International Congress on Engineering and Life Science, 112–118.
  • Shahin, A., Cowled, C., Baillères, H., Fawzia, S. (2023). Mechanical behaviour of timber-steel composite connection systems. https://doi.org/10.52202/069179-0414
  • Smith, I., Frangi, A. (2014). Use of timber in tall multi-storey buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 167(3), 117–134.
  • Şentürk, H. (2019). 21. Yüzyılda üretilen çok katlı ahşap yapıların yapım sürecinin değerlendirilmesi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Tuure, A. (2023). Space efficiency in Finnish mid-rise timber apartment buildings. Buildings, 13(8), 2094. https://doi.org/10.3390/buildings13082094
  • UNEP. (2020). UN Environment Programme, Emissions Gap Report 2020. https://www.unep.org/emissions-gap-report-2020 . ISBN: 978-92-807-3812-4.
  • Wang, L., Toppinen, A., Juslin, H. (2014). Use of wood in green building: A study of expert perspectives from the UK. Journal of Cleaner Production, 65, 350–361. https://doi.org/10.1016/j.jclepro.2013.08.023
  • Wilkie, S., Dyer, T. (2021). Design and durability of early 20th century concrete bridges in Scotland: A review of historic test data. International Journal of Architectural Heritage, 16(8), 1131–1151. https://doi.org/10.1080/15583058.2020.1870776
  • Yadav, R., Kumar, J. (2022). Engineered wood products as a sustainable construction material: A review. https://doi.org/10.5772/intechopen.99597

The Evolution of Contemporary Timber Architecture: A Review on Technology and Sustainability

Yıl 2025, Cilt: 4 Sayı: 2, 105 - 120, 31.12.2025

Öz

Timber has recently emerged as a focal point in sustainable architecture due to its naturally renewable properties, low energy requirements during production, and carbon sequestration capacity. Traditionally used in low-rise buildings, this material has, through advancements in engineering techniques, become a viable option for multi-storey urban structures. This study explores how contemporary timber architecture has evolved in both technological and regulatory dimensions, and evaluates how this transformation has gained momentum with the widespread adoption of advanced engineered timber products such as Cross-Laminated Timber (CLT), Laminated Veneer Lumber (LVL), and Glued Laminated Timber (GLT). The research adopts a qualitative methodology, combining literature review and comparative case study analysis of pioneering multi-storey timber buildings from Europe, North America, and Asia. These buildings were selected based on their innovative use of material technologies and their role in driving significant changes in national building codes. Findings reveal that contemporary timber buildings are shaped not only by technical criteria such as structural performance and fire safety, but also through their integration with carbon-neutral policies and green building certification systems. Moreover, the study demonstrates that the feasibility of such structures is directly influenced by the concurrent progression of technological advancements and the adaptation or rewriting of building standards. In conclusion, the widespread adoption of multi-storey timber buildings requires not only advances in material technologies, but also the restructuring of building regulations in alignment with environmental objectives. For developing countries like Turkey, which are seeking transformation in their construction sectors, this analysis provides concrete and actionable insights into how timber can contribute to sustainable urban development.

Kaynakça

  • 4B. (2022). Renggli ve 4B arasındaki 30 yıllık işbirliği. https://www.4-b.ch/de/blog/30-jahre-zusammenarbeit-zwischen-renggli-und-4b/
  • Akkaya, M., Şahin, H., & Erkan, H. (2021). Türkiye’de ithal odun hammaddesiyle ilişkili orman endüstri işletmelerinin genel yapısı. Turkish Journal of Forest Science, 5(2), 89–100.
  • Almeida, L., Silva, A., Veiga, R., Mirão, J., Vieira, M. (2021). 20th-century award-winning buildings in Lisbon (Portugal): Study of plasters, rendering, and concrete materials aiming their sustainable preservation. Buildings, 11(8), 359. https://doi.org/10.3390/buildings11080359
  • Araújo, V., Cortez-Barbosa, J., Gava, M., Garcia, J., Souza, A., Savi, A., …, Lahr, F. (2016). Classification of wooden housing building systems. Bioresources, 11(3). https://doi.org/10.15376/biores.11.3.dearaujo
  • Bajno, D., Grzybowska, A., Bednarz, Ł. (2021). Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies, 14(18), 5975. https://doi.org/10.3390/en14185975
  • Bartha, B., Olărescu, A. M. (2020). Neo-vernacular concepts for value-adding in contemporary European architecture and design. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, Agricultural Food Engineering, 13(62), 2. https://doi.org/10.31926/but.fwiafe.2020.13.62.2.6
  • Başoğlu, H. (2016). 29293989120 [Photograph]. Flickr. Retrieved January 28, 2025, from https://www.flickr.com/photos/huseyinbasaoglu/29293989120
  • Berglund, L., Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Advanced Materials, 30(19). https://doi.org/10.1002/adma.201704285
  • Blay-Armah, A. (2023). Evaluation of embodied carbon emissions in UK supermarket constructions: A study on steel, brick, and timber frameworks with consideration of end-of-life processes. Sustainability, 15(20), 14978. https://doi.org/10.3390/su152014978
  • Bowyer, J. L., Shmulsky, R., Haygreen, J. G. (2012). Forest products and wood science: An introduction. Wiley-Blackwell.
  • Cheng, C., Chow, C., Yue, T., Ng, Y., Chow, W. (2022). Smoke hazards of tall timber buildings with new products. Encyclopedia, 2(1), 593–601. https://doi.org/10.3390/encyclopedia2010039
  • Çalışkan, H., Yıldırım, E., & Yılmaz, B. (2024). Forest management in Türkiye: Economic pressures, legal frameworks, and ecological consequences. International Environmental Agreements: Politics, Law and Economics, Advance online publication.
  • Dang, H. W. (2023). Using sustainable timber in architecture in Vietnam, E3S Web of Conferences 403, 02001, https://doi.org/10.1051/e3sconf/202340302001
  • Evison, D., Kremer, P., Guiver, J. (2018). Mass timber construction in Australia and New Zealand—Status, and economic and environmental influences on adoption. Wood and Fiber Science, 50(Special), 128–138. https://doi.org/10.22382/wfs-2018-046
  • Fan, J., Chen, L., Zhang, D., Nie, H., Mao, A., Yang, L., …, Yuan, Y. (2020). Study on environment and carbon sequestration effect of wood structure building based on sustainable development. American Journal of Environmental Science and Engineering, 4(4), 65. https://doi.org/10.11648/j.ajese.20200404.13
  • Fang, D., Mueller, C. (2021). Mortise-and-tenon joinery for modern timber construction: Quantifying the embodied carbon of an alternative structural connection. Architecture Structures and Construction, 3(1), 11–24. https://doi.org/10.1007/s44150-021-00018-5
  • Giedion, S. (1967). Space, time and architecture: The growth of a new tradition. Harvard University Press.
  • Giménez, V., Avila, J. (2022). Timber buildings: A sustainable construction alternative. VibrArch 2022 Proceedings. https://doi.org/10.4995/vibrarch2022.2022.15307
  • Goldhahn, C., Cabane, E., Chanana, M. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2206). https://doi.org/10.1098/rsta.2020.0339
  • Gustavsson, L., Sathre, R. (2010). Energy and CO2 analysis of wood substitution in construction. Climatic Change, 105(1–2), 129–153. https://doi.org/10.1007/s10584-010-9876-8
  • Hadi, Y., Hermawan, D., Abdillah, I., Mubarok, M., Arsyad, W., Pari, R. (2022). Polystyrene-impregnated glulam resistance to subterranean termite attacks in a laboratory test. Polymers, 14(19), 4003. https://doi.org/10.3390/polym14194003
  • He, M., Luo, J., Zheng, L. (2017). Key technologies for prefabricated timber buildings. Modular and Offsite Construction (MOC) Summit Proceedings. https://doi.org/10.29173/mocs62
  • Hoadley, R. B. (2000). Understanding wood: A craftsman’s guide to wood technology. Taunton Press. Hoyos, C. M., Haglund, B. (2020). Wood+: Strategies for a Material Shift in Architectural Design, 2020 AIA/ACSA Intersections Research Conference: CARBON, 166-172.
  • Ilgın, E., Karjalainen, M. (2021). Preliminary design proposals for dovetail wood board elements in multi-story building construction. Architecture, 1(1), 56–68. https://doi.org/10.3390/architecture1010006
  • Ilgın, H., Karjalainen, M. (2023). Massive wood construction in Finland: Past, present, and future. In IntechOpen. https://doi.org/10.5772/intechopen.104979
  • Ilgın, H., Karjalainen, M., Koponen, O. (2022). Review of the current state-of-the-art of dovetail massive wood elements. In IntechOpen. https://doi.org/10.5772/intechopen.99090
  • Ji, M., Zhang, W., Diao, X., Wang, G., Hu, M. (2023). Intelligent automation manufacturing for Betula solid timber based on machine vision detection and optimization grading system applied to building materials. Forests, 14(7), 1510. https://doi.org/10.3390/f14071510
  • Jian, H., Liang, Y., Deng, C., Xu, J., Liu, Y., Shi, J., …, Park, H. (2023). Research progress on the improvement of flame retardancy, hydrophobicity, and antibacterial properties of wood surfaces. Polymers, 15(4), 951. https://doi.org/10.3390/polym15040951
  • Kim, J. (2023). Architectural robotic morphology. https://doi.org/10.32920/23556957
  • Konstantinavičienė, J. (2023). Assessment of potential of forest wood biomass in terms of sustainable development. Sustainability, 15(18), 13871. https://doi.org/10.3390/su151813871
  • Kremer, P., Symmons, M. (2015). Mass timber construction as an alternative to concrete and steel in the Australian building industry: A PESTEL evaluation of the potential. International Wood Products Journal, 6(3), 138–147. https://doi.org/10.1179/2042645315y.0000000010
  • Krutasov, B. V., Ylesin, M. A., Mashin, N. A., Dubrov, D. V. (2018). Hydrophobic modifiers for restoration of old wooden buildings in western siberia. Key Engineering Materials, 771, 43-48.
  • Kuittinen, M. (2023). Building within planetary boundaries: Moving construction to stewardship. Buildings and Cities, 4(1), 565–574. https://doi.org/10.5334/bc.351
  • Lestari, A., Hadi, Y., Hermawan, D., Santoso, A. (2015). Glulam properties of fast-growing species using mahogany tannin adhesive. Bioresources, 10(4). https://doi.org/10.15376/biores.10.4.7419-7433
  • Li, D., Zhang, Z., Wang, B., Yang, C., Deng, L. (2022). Detection method of timber defects based on target detection algorithm, Measurement 203-111937, https://doi.org/10.1016/j.measurement.2022.111937
  • Liao, Y., Tu, D., Zhou, H., Yun, H., Hu, C. (2017). Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Construction and Building Materials, 132, 508–515.
  • Mascarenhas, F., Dias, A., Christofóro, A., Simões, R. (2023). Microwave technology and its applications to wood treatment and modification. https://doi.org/10.52202/069179-0005 Materialepyramiden. (2019). Materialepyramiden. Son erişim tarihi: 28/01/2025, https://www.materialepyramiden.dk/
  • Mercader-Moyano, P., Serrano-Jiménez, A. (2021). Special issue “Urban and buildings regeneration strategy to climatic change mitigation, energy, and social poverty after a world health and economic global crisis.” Sustainability, 13(21), 11850. https://doi.org/10.3390/su132111850
  • Nabaei, S., Weinand, Y. (2011). Geometrical description and structural analysis of a modular timber structure. International Journal of Space Structures, 26(4), 321–330. https://doi.org/10.1260/0266-3511.26.4.321
  • Naturally Wood. (2024). Brock Commons Tallwood House. Erişim adresi: https://www.naturallywood.com/projects/brock-commons-tallwood-house/
  • Nouri, F., Bradford, M., Valipour, H. (2018). Experimental study of timber–timber composite members. https://doi.org/10.2495/hpsm180091
  • Nyrud, A., Bringslimark, T., Bysheim, K. (2013). Benefits from wood interior in a hospital room: A preference study. Architectural Science Review, 57(2), 125–131. https://doi.org/10.1080/00038628.2013.816933
  • Okan, T., Köse, N., Arifoğlu, E., Köse, C. (2016). Assessing Ecotourism Potential of Traditional Wooden Architecture in Rural Areas: The Case of Papart Valley. Sustainability, 8(10), 974. https://doi.org/10.3390/su8100974
  • Piccardo, C., Alam, A., Hughes, M. (2021). The potential contribution of wood in green building certifications. Architectural Research in Finland, 5(1). https://doi.org/10.37457/arf.113262
  • Redhwi, H., Siddiqui, M., Andrady, A., Furquan, S., Hussain, S. (2023). Durability of high-density polyethylene (HDPE)- and polypropylene (PP)-based wood-plastic composites—Part 1: Mechanical properties of the composite materials. Journal of Composites Science, 7(4), 163. https://doi.org/10.3390/jcs7040163
  • Roos, A., Woxblom, L., McCluskey, D. (2010). The influence of architects and structural engineers on timber in construction – Perceptions and roles. Silva Fennica, 44(5). https://doi.org/10.14214/sf.126
  • Ryoo, S. L., Youn, H. C. (2019). The Evolutionary Use of Curved Wood in Korean Traditional Architecture. Sustainability, 11(23), 6557. https://doi.org/10.3390/su11236557
  • Schuetze, T. (2018). Wood Constructions for Sustainable Building Renovation. Advanced Materials Research, 1150, 67–72. https://doi.org/10.4028/www.scientific.net/amr.1150.67
  • Serengil, Y. (2023). The roadmap to achieving climate neutrality in Türkiye: A comprehensive analysis of long-term forestry strategies. In Proceedings of the 3rd International Congress on Engineering and Life Science, 112–118.
  • Shahin, A., Cowled, C., Baillères, H., Fawzia, S. (2023). Mechanical behaviour of timber-steel composite connection systems. https://doi.org/10.52202/069179-0414
  • Smith, I., Frangi, A. (2014). Use of timber in tall multi-storey buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 167(3), 117–134.
  • Şentürk, H. (2019). 21. Yüzyılda üretilen çok katlı ahşap yapıların yapım sürecinin değerlendirilmesi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Tuure, A. (2023). Space efficiency in Finnish mid-rise timber apartment buildings. Buildings, 13(8), 2094. https://doi.org/10.3390/buildings13082094
  • UNEP. (2020). UN Environment Programme, Emissions Gap Report 2020. https://www.unep.org/emissions-gap-report-2020 . ISBN: 978-92-807-3812-4.
  • Wang, L., Toppinen, A., Juslin, H. (2014). Use of wood in green building: A study of expert perspectives from the UK. Journal of Cleaner Production, 65, 350–361. https://doi.org/10.1016/j.jclepro.2013.08.023
  • Wilkie, S., Dyer, T. (2021). Design and durability of early 20th century concrete bridges in Scotland: A review of historic test data. International Journal of Architectural Heritage, 16(8), 1131–1151. https://doi.org/10.1080/15583058.2020.1870776
  • Yadav, R., Kumar, J. (2022). Engineered wood products as a sustainable construction material: A review. https://doi.org/10.5772/intechopen.99597
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlıkta Malzeme ve Teknoloji, Sürdürülebilir Mimari
Bölüm Derleme
Yazarlar

Sadık Akşar 0000-0003-0583-4197

Rengin Beceren Öztürk 0000-0001-6259-3364

Gönderilme Tarihi 28 Ocak 2025
Kabul Tarihi 13 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Akşar, S., & Beceren Öztürk, R. (2025). Çağdaş Ahşap Mimarisinin Evrimi: Teknoloji ve Sürdürülebilirlik Üzerine Bir İnceleme. Kırklareli Üniversitesi Mimarlık Fakültesi Dergisi, 4(2), 105-120. https://izlik.org/JA23AD92RB