Derleme
BibTex RIS Kaynak Göster

Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature

Yıl 2025, Cilt: 6 Sayı: 2, 123 - 129, 28.07.2025

Öz

Introduction: In recent years, there has been growing interest in exploring the clinical potential of micro ribonucleic acid (miRNA) mimetics or anti-miRNAs to overcome drug resistance, enhance chemotherapy sensitivity, and improve treatment outcomes in neuroblastomas. This study aimed to address the question of whether miRNAs could play a role in the treatment of neuroblastoma with spinal involvement.

Methods: A systematic literature review was conducted in Dec 2024 following PRISMA guidelines. To achieve this, a systematic review of the literature was conducted through sequential searches of electronic databases. The obtained data were analyzed and presented in terms of counts and frequencies.

Results: Three relevant articles containing the specified keywords were identified.

Conclusion: Based on these findings, it is suggested that miRNAs hold promise for advancing the understanding of pharmacobiological mechanisms in neuroblastomas and for informing future therapeutic strategies, particularly for cases involving spinal involvement.

Kaynakça

  • Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149: dev200331.
  • Okada R, Takenobu H, Satoh S, et al. L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes. Genes Cells 2024; 29: 838-53.
  • Chan KI, Zhang S, Li G, et al. MYC oncogene: a druggable target for treating cancers with natural products. Aging Dis 2024; 15: 640-97.
  • Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3: a014415.
  • Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet 2007; 369: 2106-20.
  • Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930-5.
  • Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971-4.
  • Stallings RL. MicroRNA involvement in the pathogenesis of neuroblastoma: potential for microRNA mediated therapeutics. Curr Pharm Des 2009; 15: 456-62.
  • Mestdagh P, Fredlund E, Pattyn F, et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 2010 ; 29: 1394-404.
  • Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26: 5017-22.
  • Powers JT, Tsanov KM, Pearson DS, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature 2016; 535: 246-51.
  • Laneve P, Di Marcotullio L, Gioia U, et al. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 2007; 104: 7957-62.
  • De Brouwer S, Mestdagh P, Lambertz I, et al. Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma. Int J Cancer 2012; 130: 2591-8.
  • Mari E, Zicari A, Fico F, Massimi I, Martina L, Mardente S. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines. Oncol Lett 2016; 12: 2133-8.
  • Zhang H, Qi M, Li S, et al. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther 2012; 11: 1454-66.
  • Li J, Shen J, Zhao Y, et al. Role of miR 181a 5p in cancer (Review). Int J Oncol 2023; 63: 108.
  • Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 2013; 87: 459-68.
  • Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11: 219-28.
  • Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30: 371-80.
  • Hammad R, Selim M, Eldosoky MA, et al. Contribution of plasma microRNA-21, microRNA-155 and circulating monocytes plasticity to childhood neuroblastoma development and induction treatment outcome. Pathol Res Pract 2024; 254: 155060.
  • Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319: 1575-85.
  • Karaarslan N, Yilmaz I, Ozbek H, et al. Systematic evaluation of promising clinical trials-gene silencing for the treatment of glioblastoma. Turk Neurosurg 2019; 29: 328-334.
  • Ali Gumustas S, Isyar M, Topuk S, et al. Systematic evaluation of drug-loaded hydrogels for application in osteosarcoma treatment. Curr Pharm Biotechnol 2016; 17: 866-72.
  • Huang W, Li Z, Zhao L, Zhao W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed Pharmacother 2017; 92: 46-57.
  • Buhagiar A, Ayers D. Chemoresistance, cancer stem cells, and miRNA influences: the case for neuroblastoma. Anal Cell Pathol (Amst) 2015; 2015: 150634.
  • Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015; 8: 3811.
  • Mou L, Xin M, Li E. Dysregulation of miR-301a-3p serves as a non-invasive biomarker and is associated with inflammatory responses in traumatic spinal cord injury. Acta Biochim Pol 2022; 69: 725-30.
  • Fetahu IS, Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40: 173-89.
  • Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A focus on regulatory networks linking microRNAs, transcription factors and target genes in neuroblastoma. Cancers (Basel) 2021; 13: 5528.
  • Schulte JH, Marschall T, Martin M, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 2010; 38: 5919-28.
  • Kim NH, Kim HS, Kim NG, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011; 4: ra71.
  • Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319: 1575-85.
  • Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11: 219-28.
  • Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 2013; 87: 459-68.
  • Kartal Y, Tokat UM, Kelicen-Ugur P, Yılmaz S, Karahan S, Budak MT. Evaluation of the relationship between aromatase/sirtuin1 interaction and miRNA expression in human neuroblastoma cells. Curr Mol Pharmacol 2023; 16: 609-28.
  • Cocchi S, Greco V, Sidarovich V, et al. EGCG disrupts the LIN28B/Let-7 interaction and reduces neuroblastoma aggressiveness. Int J Mol Sci 2024; 25: 4795.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16: 203-22.
  • van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18: 1386-96.

Omurga tutulumu olan nöroblastomların gelecekteki tedavisinde miRNA'ların sistematik incelemesi: literatürden elde edilen bilgiler

Yıl 2025, Cilt: 6 Sayı: 2, 123 - 129, 28.07.2025

Öz

Giriş: Son yıllarda, ilaç direncini aşmak, kemoterapi duyarlılığını artırmak ve nöroblastomların tedavi sonuçlarını iyileştirmek için mikro ribonükleik asit (miRNA) mimetiklerinin veya anti-miRNA’ların klinik potansiyelini araştırmaya yönelik ilgi artmaktadır. Bu çalışma, MiRNA’ların spinal tutulumlu nöroblastom tedavisinde rol oynayıp oynamayacağı sorusunu ele almayı amaçlamıştır.

Yöntemler: PRISMA kılavuzlarına göre Aralık 2024'te sistematik bir literatür taraması yapılmıştır. Bunu gerçekleştirmek için, elektronik veritabanlarında sıralı aramalar yoluyla literatürün sistematik bir incelemesi yapılmıştır. Elde edilen veriler sayı ve sıklık açısından analiz edilmiş ve sunulmuştur.

Bulgular: Belirlenen anahtar kelimeleri içeren üç ilgili makale tespit edilmiştir.

Sonuç: Bu bulgulara dayanarak, miRNA'ların nöroblastomlarda farmakobiyolojik mekanizmaların anlaşılmasını ilerletmek ve özellikle omurga tutulumu olan vakalar için gelecekteki tedavi stratejilerine bilgi sağlamak açısından umut vaat ettiği öne sürülmektedir.

Kaynakça

  • Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149: dev200331.
  • Okada R, Takenobu H, Satoh S, et al. L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes. Genes Cells 2024; 29: 838-53.
  • Chan KI, Zhang S, Li G, et al. MYC oncogene: a druggable target for treating cancers with natural products. Aging Dis 2024; 15: 640-97.
  • Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3: a014415.
  • Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet 2007; 369: 2106-20.
  • Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930-5.
  • Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971-4.
  • Stallings RL. MicroRNA involvement in the pathogenesis of neuroblastoma: potential for microRNA mediated therapeutics. Curr Pharm Des 2009; 15: 456-62.
  • Mestdagh P, Fredlund E, Pattyn F, et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 2010 ; 29: 1394-404.
  • Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26: 5017-22.
  • Powers JT, Tsanov KM, Pearson DS, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature 2016; 535: 246-51.
  • Laneve P, Di Marcotullio L, Gioia U, et al. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 2007; 104: 7957-62.
  • De Brouwer S, Mestdagh P, Lambertz I, et al. Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma. Int J Cancer 2012; 130: 2591-8.
  • Mari E, Zicari A, Fico F, Massimi I, Martina L, Mardente S. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines. Oncol Lett 2016; 12: 2133-8.
  • Zhang H, Qi M, Li S, et al. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther 2012; 11: 1454-66.
  • Li J, Shen J, Zhao Y, et al. Role of miR 181a 5p in cancer (Review). Int J Oncol 2023; 63: 108.
  • Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 2013; 87: 459-68.
  • Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11: 219-28.
  • Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30: 371-80.
  • Hammad R, Selim M, Eldosoky MA, et al. Contribution of plasma microRNA-21, microRNA-155 and circulating monocytes plasticity to childhood neuroblastoma development and induction treatment outcome. Pathol Res Pract 2024; 254: 155060.
  • Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319: 1575-85.
  • Karaarslan N, Yilmaz I, Ozbek H, et al. Systematic evaluation of promising clinical trials-gene silencing for the treatment of glioblastoma. Turk Neurosurg 2019; 29: 328-334.
  • Ali Gumustas S, Isyar M, Topuk S, et al. Systematic evaluation of drug-loaded hydrogels for application in osteosarcoma treatment. Curr Pharm Biotechnol 2016; 17: 866-72.
  • Huang W, Li Z, Zhao L, Zhao W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed Pharmacother 2017; 92: 46-57.
  • Buhagiar A, Ayers D. Chemoresistance, cancer stem cells, and miRNA influences: the case for neuroblastoma. Anal Cell Pathol (Amst) 2015; 2015: 150634.
  • Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015; 8: 3811.
  • Mou L, Xin M, Li E. Dysregulation of miR-301a-3p serves as a non-invasive biomarker and is associated with inflammatory responses in traumatic spinal cord injury. Acta Biochim Pol 2022; 69: 725-30.
  • Fetahu IS, Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40: 173-89.
  • Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A focus on regulatory networks linking microRNAs, transcription factors and target genes in neuroblastoma. Cancers (Basel) 2021; 13: 5528.
  • Schulte JH, Marschall T, Martin M, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 2010; 38: 5919-28.
  • Kim NH, Kim HS, Kim NG, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011; 4: ra71.
  • Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319: 1575-85.
  • Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11: 219-28.
  • Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 2013; 87: 459-68.
  • Kartal Y, Tokat UM, Kelicen-Ugur P, Yılmaz S, Karahan S, Budak MT. Evaluation of the relationship between aromatase/sirtuin1 interaction and miRNA expression in human neuroblastoma cells. Curr Mol Pharmacol 2023; 16: 609-28.
  • Cocchi S, Greco V, Sidarovich V, et al. EGCG disrupts the LIN28B/Let-7 interaction and reduces neuroblastoma aggressiveness. Int J Mol Sci 2024; 25: 4795.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16: 203-22.
  • van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18: 1386-96.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sinirbilim (Diğer)
Bölüm Derlemeler
Yazarlar

Murat Baloglu 0000-0001-7727-1982

Hakan Millet 0000-0002-9434-3666

Tamer Tamdogan 0000-0002-0526-1459

Sevim Ondul 0000-0003-4219-4862

İbrahim Yılmaz 0000-0003-2003-6337

Numan Karaarslan 0000-0003-1503-4046

Yayımlanma Tarihi 28 Temmuz 2025
Gönderilme Tarihi 19 Mayıs 2025
Kabul Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Baloglu, M., Millet, H., Tamdogan, T., … Ondul, S. (2025). Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature. Eskisehir Medical Journal, 6(2), 123-129.
AMA Baloglu M, Millet H, Tamdogan T, Ondul S, Yılmaz İ, Karaarslan N. Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature. Eskisehir Med J. Temmuz 2025;6(2):123-129.
Chicago Baloglu, Murat, Hakan Millet, Tamer Tamdogan, Sevim Ondul, İbrahim Yılmaz, ve Numan Karaarslan. “Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature”. Eskisehir Medical Journal 6, sy. 2 (Temmuz 2025): 123-29.
EndNote Baloglu M, Millet H, Tamdogan T, Ondul S, Yılmaz İ, Karaarslan N (01 Temmuz 2025) Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature. Eskisehir Medical Journal 6 2 123–129.
IEEE M. Baloglu, H. Millet, T. Tamdogan, S. Ondul, İ. Yılmaz, ve N. Karaarslan, “Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature”, Eskisehir Med J, c. 6, sy. 2, ss. 123–129, 2025.
ISNAD Baloglu, Murat vd. “Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature”. Eskisehir Medical Journal 6/2 (Temmuz2025), 123-129.
JAMA Baloglu M, Millet H, Tamdogan T, Ondul S, Yılmaz İ, Karaarslan N. Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature. Eskisehir Med J. 2025;6:123–129.
MLA Baloglu, Murat vd. “Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature”. Eskisehir Medical Journal, c. 6, sy. 2, 2025, ss. 123-9.
Vancouver Baloglu M, Millet H, Tamdogan T, Ondul S, Yılmaz İ, Karaarslan N. Systematic review of miRNAs in the future treatment of neuroblastomas with spinal involvement: insights from the literature. Eskisehir Med J. 2025;6(2):123-9.