BibTex RIS Kaynak Göster

KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ

Yıl 2019, Cilt: 7 Sayı: 1, 106 - 120, 01.01.2019

Öz

Kobalt oksit filmleri kimyasal banyo depolama yöntemiyle 95 °C banyo sıcaklığında ve 8 saat depolama süresinde cam tabanlar üzerine üretilmiştir. X-ışını kırınım deseni incelendiğinde, numunenin yüzey merkezli kübik Co3O4 kristal yapısına sahip olduğu belirlenmiştir. Kübik kristal fazı nanoçubuklar şeklinde alan emisyon taramalı elektron mikroskobu görüntülerinden açıkça görülmüştür. Numunenin Raman spektrumu Co3O4 nanokristallerin oluşumunu desteklemektedir. Absorbans ölçümlerinden numunenin direkt bant geçişine sahip olduğu ve bant aralığı değerleri Eopt1 = 1,48 eV ve Eopt2=2,05 eV olarak belirlenmiştir. Numunenin bazı optik parametreleri dalgaboyunun fonksiyonu olarak envelope yöntemi yardımıyla incelenmiştir. Co3O4 filminin dielektrik sabitleri (n, k, ε1 ve ε∞), plazma frekansı ωp ve taşıyıcı yoğunluğu Nopt gibi optik sabitleri belirlenmiştir.

Kaynakça

  • [1] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L ve Tondello E. Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt (II) Precursor by Chemical Vapor Deposition. Chem Mater 2001; 13: 588-593.
  • [2] Shinde VR, Mahadik SB, Gujar TP, Lokhande CD. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 2006; 252: 7487–7492.
  • [3] Kadam LD ve Patil PS. Thickness-dependent properties of sprayed cobalt oxide thin films. Mater Chem Phys 2001; 68: 225–232.
  • [4] Patil PS, Kadam LD ve Lokhande CD. Preparation and characterization of spray pyrolysed cobalt oxide thin films. Thin Solid Films 1996; 272: 29-32.
  • [5] Dhas CR, Venkatesh R, Sivakumar R, Raj AME, Sanjeeviraja C. Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films. Opt Mater 2017; 72: 717-729.
  • [6] McDonald GE. A preliminary study of a solar selective coating system using a black cobalt oxide for high temperature solar collectors. Thin Solid Films 1980; 72: 83-88.
  • [7] Seike T ve Nagai J. Electrochromism of 3d transition metal oxides. Sol Energy Mater 1991; 22: 107-117.
  • [8] Wöllenstein J, Burgmair M, Plescher G, Sulima T, Hildenbrand J, Böttner H ve Eisele I. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens Actuators, B 2003; 93: 442-448.
  • [9] Shim HS, Shinde VR, Kim HJ, Sung YE, Kim WB. Porous cobalt oxide thin films from low temperature solution phase synthesis for electrochromic electrode. Thin Solid Films 2008; 516: 8573-8578.
  • [10] Xia XH, Tu JP, Xiang JY, Huang XH, Wang XL, Zhao XB. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. J Power Sources 2010; 195: 2014–2022.
  • [11] Al-Ani SK. Methods of Determining the Refractive Index of Thin Solid Films. Iraqi J of Appl Phys 2008; 4: 17-23.
  • [12] Manifacier JC, Gasiot J, Fillard JP. A Simple Method for the Determination of the Optical Constants n, k and the Thickness of a Weakly Absorbing Thin Film. J Phys E 1967; 9: 1002-1004.
  • [13] Swanepoel R. Determination of the Thickness and Optical Constants of Amorphous Silicon. J Phys E: Sci Instrum 1983; 16: 1214-1222.
  • [14] Kushev DB, Zheleva NN. A new method for the determination of the thickness, the optical constants and the relaxation time of weakly absorbing semiconducting thin films. Infrared Phys 1986; 26: 385-393.
  • [15] Epstein KA, Misemer DK, Vernstrom GD. Optical parameters of absorbing semiconductors from transmission and reflection. Appl Opt 1987; 26: 294-299.
  • [16] Minkov DA. Method for determining the optical constants of a thin film on a transparent substrate. J Phys D: Appl Phys 1989; 22: 199-205.
  • [17] Minkov DA. Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum. J Phys D: Appl Phys 1989; 22: 1157-1161.
  • [18] Pejova B, Isahi A, Najdoski M, Grozdanov I. Fabrication and characterization of nanocrystalline cobalt oxide thin films. Mater Res Bull 2001; 36: 161–170.
  • [19] Barrett CS ve Massalski TB. Structure of Metals. 3rd revised ed. Oxford, England: Pergamon Press, 1980.
  • [20] Cullity BD ve Stock SR. Elements of X-Ray Diffraction. Newyork, NY, USA: Prentice Hall, 2001.
  • [21] Rousseau DL, Bauman RP, Porto SPS. Normal Mode Determination in Crystals. J Raman Spectrosc 1981; 10: 253-290.
  • [22] Hadjiev VG, Iliev MN ve Vergilov IV. The Raman spectra of Co3O4. J Phys C: Solid State Phys 1988; 21: Ll99-L201.
  • [23] Jiang J, Li L. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater Lett 2007; 61: 4894–4896.
  • [24] Ramana CV, Massot M ve Julien CM. XPS and Raman spectroscopic characterizationof LiMn2O4 spinels. Surf Interface Anal 2005; 37: 412–416.
  • [25] Miedzinska KME, Hollebone BR ve Cook JG. An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films. J Phys Chem Solids 1987; 48: 649-656.
  • [26] Nkeng P, Poillerat G, Koenig JF, Chartier P, Lefez B, Lopitaux J, Lenglet MJ. Characterization of spinel-type cobalt and nickel oxide thin films by x-ray near grazing diffraction, transmission and reflectance spectroscopies, and cyclic voltammetry. Electrochem Soc 1995;142: 1777-1783.
  • [27] Makhlouf SA, Bakr ZH, Aly KI, Moustafa MS. Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices Microstruct 2013; 64: 107–117.
  • [28] Cheng CS, Serizawa M, Sakata H, Hirayama T. Electrical conductivity of Co3O4 films prepared by chemical vapour deposition. Mater Chem and Phys 1998; 53: 225-230.
  • [29] Xu XL, Chen Z, Y Li, Chen W, Li J. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf Sci 2009; 603: 653–658.
  • [30] Kim KJ ve Park YR. Optical investigation of charge-transfer transitions in spinel Co3O4. Solid State Commun 2003; 127: 25-28.
  • [31] Pankove JI. Optical Processes in Semiconductors. New Jersey, USA: Prentice-Hall Inc., 1975.
  • [32] Varkey AJ ve Fort AF. A chemical method for preparation of cobalt oxide thin films. Sol Energy Mater Sol Cells 1993; 31: 277-282.
  • [33] Drasovean R ve Condurache-Bota S. Structural characterization and optical properties of Co3O4 and CoO films. J Optoelectron Adv M 2009; 11: 2141-2144.
  • [34] Zhu X, Wang J, Nguyen D, Thomas J, Norwood RA, Peyghambarian N. Linear and nonlinear optical properties of Co3O4 nanoparticle-doped polyvinyl-alcohol thin films. Opt Mater Express 2012; 2: 103-110.
  • [35] Barrera-Calva E, Martinez-Flores JC, Huert L, Avila A, Ortega-Lopez M. Ellipsometric spectroscopy study of cobalt oxide thin films deposited by sol–gel. Sol Energy Mater Sol Cells 2006; 90: 2523-2531.
  • [36] Ekwealor ABC, Offiah SU, Ezugwu SC, Ezema FI. Variations of optical and structural properties of Co𝑥O𝑦 thin films with thermal treatment. Indian J Mater Sci 2014; 2014: 367950.
  • [37] Turan E, Zeybekoğlu E. Spray Pyrolysis Yöntemiyle Üretilen In2O3 Filmlerinin Yapısal veOptik Özellikleri. Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2017; 19: 432- 446.
  • [38] Kittel C, Introduction to Solid State Physics. New York, USA: John Wiley and Sons, Inc., 1986.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Evren Turan Bu kişi benim

Esra Zeybekoğlu Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Turan, E., & Zeybekoğlu, E. (2019). KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 7(1), 106-120.
AMA Turan E, Zeybekoğlu E. KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. Ocak 2019;7(1):106-120.
Chicago Turan, Evren, ve Esra Zeybekoğlu. “KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 7, sy. 1 (Ocak 2019): 106-20.
EndNote Turan E, Zeybekoğlu E (01 Ocak 2019) KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7 1 106–120.
IEEE E. Turan ve E. Zeybekoğlu, “KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 7, sy. 1, ss. 106–120, 2019.
ISNAD Turan, Evren - Zeybekoğlu, Esra. “KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7/1 (Ocak 2019), 106-120.
JAMA Turan E, Zeybekoğlu E. KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2019;7:106–120.
MLA Turan, Evren ve Esra Zeybekoğlu. “KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 7, sy. 1, 2019, ss. 106-20.
Vancouver Turan E, Zeybekoğlu E. KİMYASAL BANYO DEPOLAMA YÖNTEMİYLE ÜRETİLEN Co3O4 FİLMİNİN OPTİK SABİTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2019;7(1):106-20.