Araştırma Makalesi
BibTex RIS Kaynak Göster

NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS

Yıl 2021, Cilt: 9 Sayı: 2, 47 - 53, 30.08.2021
https://doi.org/10.20290/estubtdb.923753

Öz

Nonlinear optical (NLO) materials have highly interesting photo-physical behaviors, which have a wide variety of applications, from optoelectronics to medicine. NLO properties together with infrared (IR) and nuclear magnetic resonance (NMR) analyses on the interaction between hydroquinone (HQ) and pristine and boron or silicon doped C60 fullerene systems have been investigated by density functional theory (DFT). C60@HQ systems in the cis and especially trans forms have NLO applications. The obtained results related to optical properties such as polarizability and first hyperpolarizability may have useful predictive values which can be of interest.

Kaynakça

  • Cotelle N, Moreau S, Cotelle P, Catteau, JP, Bernier JL, Henichart JP. Generation of free radicals by simple prenylated hydroquinone derivatives, natural antitumor agents from the marine urochordate aplidium californicum. Chemical Research in Toxicology 1991; 4: 300–305.
  • [2] Shadyro OI, Glushonok GK, Glushonok TG, Edimecheva IP, Moroz AG, Sosnovskaya AA, Polozov GI. Quinones as free-radical fragmentation inhibitors in biological important molecules. Free Radical Research 2002; 36: 859-867.
  • [3] Yamaguchi LF, Lago JHG, Tanizaki TM, Mascio PDi, Kato MJ. Antioxidant activity of prenylated hydroquinone and benzoic acid derivatives from Piper crassinervium. Kunth. Phytochemistry 2006; 67: 1838-1843.
  • [4] Engel E, Dreizler RM. Density Functional Theory: An Advanced Course (Theoretical and Mathematical Physics) Springer 2011.
  • [5] Wilson, HW. The vapor phase infrared spectra of hydroquinone, pyrocatechol and resorcinol. Spectrochim. Acta A 1974; 30: 2141.
  • [6] Caminati W, Melandri S, Favero LB. Microwave spectroscopy of hydroquinone: The rotational spectrum of the cis conformer. The Journal of Chemical Physics 1994; 100:8569–8572.
  • [7] Dunn TM, Tembreull, R, Lubman, D. M, Free-jet spectra and structure of o-, m- and p-dihydroxybenzenes. Chemical Physics Letters 1985; 121:453–457.
  • [8] Humphrey SJ, Prat DW. High resolution S1→ S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nuclear spin statistical weights. The Journal of Chemical Physics 1993; 99:5078–5086.
  • [9] Tzeng WB, Narayanan K, Hsieh CY, Tung CC. A study of the excited state structure and vibrations of hydroquinone by ab initio calculations and resonant two-photon ionization spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 1997; 53:2595–2604.
  • [10] Gerhards M, Unterberg C, Schumm S. Structure and vibrations of dihydroxybenzene cations and ionization potentials of dihydroxybenzenes studied by mass analyzed threshold ionization and infrared photoinduced Rydberg ionization spectroscopy as well as ab initio theory. Journal of Chemical Physics 1999; 111:7966–7975
  • [11] Varsanyi G. Assignment of Vibrational Spectra of Seven Hundred Benzene Derivatives. New York, NY, USA: Wiley,1974.
  • [12] Boyd R. Nonlinear Optics. 3rd ed. UK:Academic Press. 2008.
  • [13] Kuzmin AN. Resonance Raman probes for organelle-specific labeling in live cells. Scientific Reports 2006; 6: 28483
  • [14] Yuan Y, Lin Y, Gu B, Panwar N, Tjin SC, Song J, Qu J, Yong KT. Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives. Coordination Chemistry Reviews 2017; 339: 138
  • [15] Armaković S, Armaković SJ, Šetrajčić JP, Holodkov V. Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J Mol Model 2014; 20:2538.
  • [16] Medishetty R, Zareba JK, Mayer D, Samoc M, Fischer RA. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem Soc Rev 2017; 46:4976.
  • [17] Ergürhan O, Parlak C, Alver Ö, Şenyel M. Conformational and electronic properties of hydroquinone adsorption on C60 fullerenes: Doping atom, solvent and basis set effects. Journal of Molecular Structure 2018; 1167: 227–231.
  • [18] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT. 2009.
  • [19] Lu T, Chen F, Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012; 33: 580–592.
  • [20] Dennington RD, Keith TA., Millam J.M. GaussView 5.0.8, Gaussian Inc., 2008.
  • [21] Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics'. J Molec Graphics 1996, 14:1:33-38.
  • [22] Prasad PN, Williams DS. Introduction to Nonlinear Optical Effects in Molecules and Polymers. John Wiley & Soons New York, USA: 1991. pp. 66-77.
  • [23] Akai N, Kudoh S, Takayanagi M, Nakata M. Cis-trans isomerization equilibrium in hydroquinone in low-temperature argon and xenon matrices studied by FTIR spectroscopy. Chemical Physics Letters 2002; 356: 133–139.
  • [24] Scott AP, Radom L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. Journal of Physical Chemistry 1996; 100:16502-16513.
  • [25] Vennila P, Govindaraju M, Venkatesh G, Kamal C. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations. Journal of Molecular Structure 2016; 1111:151–156.
  • [26] Abbaz T, Bendjeddou A, Villemin D. Structural and quantum chemical studies on aryl sulfonyl piperazine derivatives. Journal of Drug Delivery & Therapeutics 2019; 9: 88-97.
  • [27] Dheivamalar S, Sugi L. Density functional theory (DFT) investigations on doped fullerene with heteroatom substitution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2015; 151:687–695.
  • [28] Liyanage PS, De Silva RM, De Silva, KMN. Nonlinear optical (NLO) properties of novel organometallic complexes: High accuracy density functional theory (DFT) calculations. Journal of Molecular Structure: Theochem 2003; 639: 195–201.
  • [29] Thanthiriwatte KS, Nalin de Silva KM. Non-linear optical properties of novel fluorenyl derivatives - Ab initio quantum chemical calculations. Journal of Molecular Structure: Theochem 2002; 617:169–175.

NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS

Yıl 2021, Cilt: 9 Sayı: 2, 47 - 53, 30.08.2021
https://doi.org/10.20290/estubtdb.923753

Öz

Çizgisel olmayan optik malzemeler, opto elektronikten tıbba kadar çok çeşitli uygulamalar için elverişli, oldukça ilginç foto-fiziksel davranışlara sahiptir. Hidrokinon ile katkılanmamış ve bor veya silikon katkılı C60 fulleren sistemler arasındaki etkileşimin çizgisel olmayan optik özellikleri, infrared ve nükleer manyetik rezonans analizleri yoğunluk fonksiyonel teorisi ile incelenmektedir. Cis ve özellikle trans formlarındaki C60@HQ sistemleri çizgisel olmayan optik uygulamalara sahiptir. Polarizabilite ve hiperpolarizabilite gibi optik özelliklerle ilgili elde edilen sonuçlar, ilgi çekici olabilecek yararlı tahmin değerlerine sahip olabilir.

Kaynakça

  • Cotelle N, Moreau S, Cotelle P, Catteau, JP, Bernier JL, Henichart JP. Generation of free radicals by simple prenylated hydroquinone derivatives, natural antitumor agents from the marine urochordate aplidium californicum. Chemical Research in Toxicology 1991; 4: 300–305.
  • [2] Shadyro OI, Glushonok GK, Glushonok TG, Edimecheva IP, Moroz AG, Sosnovskaya AA, Polozov GI. Quinones as free-radical fragmentation inhibitors in biological important molecules. Free Radical Research 2002; 36: 859-867.
  • [3] Yamaguchi LF, Lago JHG, Tanizaki TM, Mascio PDi, Kato MJ. Antioxidant activity of prenylated hydroquinone and benzoic acid derivatives from Piper crassinervium. Kunth. Phytochemistry 2006; 67: 1838-1843.
  • [4] Engel E, Dreizler RM. Density Functional Theory: An Advanced Course (Theoretical and Mathematical Physics) Springer 2011.
  • [5] Wilson, HW. The vapor phase infrared spectra of hydroquinone, pyrocatechol and resorcinol. Spectrochim. Acta A 1974; 30: 2141.
  • [6] Caminati W, Melandri S, Favero LB. Microwave spectroscopy of hydroquinone: The rotational spectrum of the cis conformer. The Journal of Chemical Physics 1994; 100:8569–8572.
  • [7] Dunn TM, Tembreull, R, Lubman, D. M, Free-jet spectra and structure of o-, m- and p-dihydroxybenzenes. Chemical Physics Letters 1985; 121:453–457.
  • [8] Humphrey SJ, Prat DW. High resolution S1→ S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nuclear spin statistical weights. The Journal of Chemical Physics 1993; 99:5078–5086.
  • [9] Tzeng WB, Narayanan K, Hsieh CY, Tung CC. A study of the excited state structure and vibrations of hydroquinone by ab initio calculations and resonant two-photon ionization spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 1997; 53:2595–2604.
  • [10] Gerhards M, Unterberg C, Schumm S. Structure and vibrations of dihydroxybenzene cations and ionization potentials of dihydroxybenzenes studied by mass analyzed threshold ionization and infrared photoinduced Rydberg ionization spectroscopy as well as ab initio theory. Journal of Chemical Physics 1999; 111:7966–7975
  • [11] Varsanyi G. Assignment of Vibrational Spectra of Seven Hundred Benzene Derivatives. New York, NY, USA: Wiley,1974.
  • [12] Boyd R. Nonlinear Optics. 3rd ed. UK:Academic Press. 2008.
  • [13] Kuzmin AN. Resonance Raman probes for organelle-specific labeling in live cells. Scientific Reports 2006; 6: 28483
  • [14] Yuan Y, Lin Y, Gu B, Panwar N, Tjin SC, Song J, Qu J, Yong KT. Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives. Coordination Chemistry Reviews 2017; 339: 138
  • [15] Armaković S, Armaković SJ, Šetrajčić JP, Holodkov V. Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J Mol Model 2014; 20:2538.
  • [16] Medishetty R, Zareba JK, Mayer D, Samoc M, Fischer RA. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem Soc Rev 2017; 46:4976.
  • [17] Ergürhan O, Parlak C, Alver Ö, Şenyel M. Conformational and electronic properties of hydroquinone adsorption on C60 fullerenes: Doping atom, solvent and basis set effects. Journal of Molecular Structure 2018; 1167: 227–231.
  • [18] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT. 2009.
  • [19] Lu T, Chen F, Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012; 33: 580–592.
  • [20] Dennington RD, Keith TA., Millam J.M. GaussView 5.0.8, Gaussian Inc., 2008.
  • [21] Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics'. J Molec Graphics 1996, 14:1:33-38.
  • [22] Prasad PN, Williams DS. Introduction to Nonlinear Optical Effects in Molecules and Polymers. John Wiley & Soons New York, USA: 1991. pp. 66-77.
  • [23] Akai N, Kudoh S, Takayanagi M, Nakata M. Cis-trans isomerization equilibrium in hydroquinone in low-temperature argon and xenon matrices studied by FTIR spectroscopy. Chemical Physics Letters 2002; 356: 133–139.
  • [24] Scott AP, Radom L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. Journal of Physical Chemistry 1996; 100:16502-16513.
  • [25] Vennila P, Govindaraju M, Venkatesh G, Kamal C. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations. Journal of Molecular Structure 2016; 1111:151–156.
  • [26] Abbaz T, Bendjeddou A, Villemin D. Structural and quantum chemical studies on aryl sulfonyl piperazine derivatives. Journal of Drug Delivery & Therapeutics 2019; 9: 88-97.
  • [27] Dheivamalar S, Sugi L. Density functional theory (DFT) investigations on doped fullerene with heteroatom substitution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2015; 151:687–695.
  • [28] Liyanage PS, De Silva RM, De Silva, KMN. Nonlinear optical (NLO) properties of novel organometallic complexes: High accuracy density functional theory (DFT) calculations. Journal of Molecular Structure: Theochem 2003; 639: 195–201.
  • [29] Thanthiriwatte KS, Nalin de Silva KM. Non-linear optical properties of novel fluorenyl derivatives - Ab initio quantum chemical calculations. Journal of Molecular Structure: Theochem 2002; 617:169–175.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Orkun Ergürhan 0000-0002-7067-5746

Cemal Parlak 0000-0002-6115-6098

Özgür Alver 0000-0003-0647-4242

Yayımlanma Tarihi 30 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Ergürhan, O., Parlak, C., & Alver, Ö. (2021). NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 9(2), 47-53. https://doi.org/10.20290/estubtdb.923753
AMA Ergürhan O, Parlak C, Alver Ö. NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS. Estuscience - Theory. Ağustos 2021;9(2):47-53. doi:10.20290/estubtdb.923753
Chicago Ergürhan, Orkun, Cemal Parlak, ve Özgür Alver. “NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 9, sy. 2 (Ağustos 2021): 47-53. https://doi.org/10.20290/estubtdb.923753.
EndNote Ergürhan O, Parlak C, Alver Ö (01 Ağustos 2021) NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 9 2 47–53.
IEEE O. Ergürhan, C. Parlak, ve Ö. Alver, “NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS”, Estuscience - Theory, c. 9, sy. 2, ss. 47–53, 2021, doi: 10.20290/estubtdb.923753.
ISNAD Ergürhan, Orkun vd. “NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 9/2 (Ağustos 2021), 47-53. https://doi.org/10.20290/estubtdb.923753.
JAMA Ergürhan O, Parlak C, Alver Ö. NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS. Estuscience - Theory. 2021;9:47–53.
MLA Ergürhan, Orkun vd. “NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 9, sy. 2, 2021, ss. 47-53, doi:10.20290/estubtdb.923753.
Vancouver Ergürhan O, Parlak C, Alver Ö. NONLINEAR OPTICAL AND SPECTRAL PROPERTIES OF HYDROQUINONE & FULLERENE SYSTEMS. Estuscience - Theory. 2021;9(2):47-53.