Araştırma Makalesi
BibTex RIS Kaynak Göster

FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS

Yıl 2023, Cilt: 11 Sayı: 2, 167 - 181, 28.08.2023
https://doi.org/10.20290/estubtdb.1278467

Öz

Let (X,d) be a finite metric space with elements P_i,i=1,…,n and with distances d_ij:=d(P_i,P_j) for i,j=1,…,n. The “Gromov product” Δ_ijk, is defined as Δ_ijk=1/2(d_ij+d_ik-d_jk). (X,d) is called Δ-generic, if for each fixed i, the set of Gromov products has a unique least element, Δ_(ij_i k_i ). The Gromov product structure on a Δ-generic finite metric space (X,d) is the map that assigns the edge E_(j_i k_i ) to P_i. A finite metric space is called “quadrangle generic”, if for all 4-point subsets {P_i,P_j,P_k,P_l }, the set {d_ij+d_kl,d_ik+d_jl,d_il+d_jk } has a unique maximal element. We define the “quadrangle structure” on a quadrangle generic finite metric space (X,d) as the map that assigns to each 4-point subset of X, the pair of edges corresponding to the maximal element of the sums of the distances. Two metric spaces (X,d) and (X,d') are said to be Δ-equivalent (Q-equivalent), if the corresponding Gromov product (quadrangle) structures are the same, up to a permutation of X.
In this paper, Gromov product structures, quadrangle structures, optimal reductions and explicit parameterizations for 5-point spaces are obtained and compared with previous results in the literature. In the final part of this review paper, we have used the Monte Carlo method to obtain the relative volume of each of the 5-point metric types inside the corresponding metric cone for 5-point spaces, meanwhile 102 different partitions of metric cone for 5-point spaces are derived, considering Gromov product structures. These 102 partitions, come in three symmetric classes forming three types of metrics for 5-point spaces. Thus one can say that all the methods of classification given here or given before in the literature of finite metric spaces, give 3 types of metrics for 5-point spaces.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118F412

Teşekkür

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 118F412 titled “Analysis of Finite Metric Spaces via Gromov Products and their Applications to Phylogenetics”.

Kaynakça

  • [1] Bilge AH, Çelik D, Koçak Ş, Rezaeinazhad, AM. Gromov product structures, quadrangle structures and split metric decompositions for finite metric spaces. Discrete Mathematics 2021; 344(6): 112358.
  • [2] Ghys É, Harpe P de la. Sur les groupes hyperboliques d'apres Mikhael Gromov. Progress in Mathematics 83. Springer, 1990. [3] Sturmfels B, Yu J. Classification of Six-Point Metrics. Electronic Journal of Combinatorics 2004; 11 R44.
  • [4] Bilge AH, Çelik D, Koçak Ş. An equivalence class decomposition of finite metric spaces via Gromov products. Discrete Mathematics 2017; 340(8): 1928-1932.
  • [5] Bilge AH, İncegül M. Gromov Product Decomposition of 7-point Metric Spaces. https://arxiv.org/abs/1804.03051v1.
  • [6] Bilge AH, İncegül M. Matrix invariants of finite metric spaces. arXiv:2003.03335.
  • [7] Bandelt HJ, Dress AWM. A Canonical Decomposition Theory for Metrics on a Finite Set. Advances in Mathematics 1992; 92: 47-105.
  • [8] Koolen J, Lesser A, Moulton V. Optimal realizations of generic five-point metrics. European Journal of Combinatorics 2009; 30(5): 1164-1171. [9] Çelik D, Bilge AH, Koçak Ş. Optimal embeddings of finite metric spaces into graphs. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-B Teorik Bilimler 2015; 3(2): 133-147.

5-NOKTALI METRİK UZAYLAR: GROMOV ÇARPIM YAPILAR, DÖRTGEN YAPILAR VE AÇIK PARAMETRİZASYONLAR

Yıl 2023, Cilt: 11 Sayı: 2, 167 - 181, 28.08.2023
https://doi.org/10.20290/estubtdb.1278467

Öz

Bu çalışmada, 5 noktalı uzaylar için Gromov çarpım yapıları, dörtgen yapılar, optimal indirgemeler ve açık parametrizasyonlar elde edilmiş ve literatürde var olan sonuçlarla karşılaştırılmıştır.

Proje Numarası

118F412

Kaynakça

  • [1] Bilge AH, Çelik D, Koçak Ş, Rezaeinazhad, AM. Gromov product structures, quadrangle structures and split metric decompositions for finite metric spaces. Discrete Mathematics 2021; 344(6): 112358.
  • [2] Ghys É, Harpe P de la. Sur les groupes hyperboliques d'apres Mikhael Gromov. Progress in Mathematics 83. Springer, 1990. [3] Sturmfels B, Yu J. Classification of Six-Point Metrics. Electronic Journal of Combinatorics 2004; 11 R44.
  • [4] Bilge AH, Çelik D, Koçak Ş. An equivalence class decomposition of finite metric spaces via Gromov products. Discrete Mathematics 2017; 340(8): 1928-1932.
  • [5] Bilge AH, İncegül M. Gromov Product Decomposition of 7-point Metric Spaces. https://arxiv.org/abs/1804.03051v1.
  • [6] Bilge AH, İncegül M. Matrix invariants of finite metric spaces. arXiv:2003.03335.
  • [7] Bandelt HJ, Dress AWM. A Canonical Decomposition Theory for Metrics on a Finite Set. Advances in Mathematics 1992; 92: 47-105.
  • [8] Koolen J, Lesser A, Moulton V. Optimal realizations of generic five-point metrics. European Journal of Combinatorics 2009; 30(5): 1164-1171. [9] Çelik D, Bilge AH, Koçak Ş. Optimal embeddings of finite metric spaces into graphs. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-B Teorik Bilimler 2015; 3(2): 133-147.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç)
Bölüm Makaleler
Yazarlar

Ayşe Hümeyra Bilge 0000-0002-6043-0833

Derya Çelik 0000-0003-2499-791X

Mehmet Şahin Koçak 0009-0007-6672-5214

Arash Mohammadıan Rezaeınazhad 0000-0002-2940-2236

Proje Numarası 118F412
Yayımlanma Tarihi 28 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Bilge, A. H., Çelik, D., Koçak, M. Ş., Mohammadıan Rezaeınazhad, A. (2023). FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 11(2), 167-181. https://doi.org/10.20290/estubtdb.1278467
AMA Bilge AH, Çelik D, Koçak MŞ, Mohammadıan Rezaeınazhad A. FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS. Estuscience - Theory. Ağustos 2023;11(2):167-181. doi:10.20290/estubtdb.1278467
Chicago Bilge, Ayşe Hümeyra, Derya Çelik, Mehmet Şahin Koçak, ve Arash Mohammadıan Rezaeınazhad. “FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 11, sy. 2 (Ağustos 2023): 167-81. https://doi.org/10.20290/estubtdb.1278467.
EndNote Bilge AH, Çelik D, Koçak MŞ, Mohammadıan Rezaeınazhad A (01 Ağustos 2023) FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11 2 167–181.
IEEE A. H. Bilge, D. Çelik, M. Ş. Koçak, ve A. Mohammadıan Rezaeınazhad, “FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS”, Estuscience - Theory, c. 11, sy. 2, ss. 167–181, 2023, doi: 10.20290/estubtdb.1278467.
ISNAD Bilge, Ayşe Hümeyra vd. “FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11/2 (Ağustos 2023), 167-181. https://doi.org/10.20290/estubtdb.1278467.
JAMA Bilge AH, Çelik D, Koçak MŞ, Mohammadıan Rezaeınazhad A. FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS. Estuscience - Theory. 2023;11:167–181.
MLA Bilge, Ayşe Hümeyra vd. “FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 2, 2023, ss. 167-81, doi:10.20290/estubtdb.1278467.
Vancouver Bilge AH, Çelik D, Koçak MŞ, Mohammadıan Rezaeınazhad A. FIVE POINT METRIC SPACES: GROMOV PRODUCT STRUCTURES, QUADRANGLE STRUCTURES AND EXPLICIT PARAMETERIZATIONS. Estuscience - Theory. 2023;11(2):167-81.