Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N'-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE

Yıl 2025, Cilt: 13 Sayı: 1, 7 - 23, 28.02.2025
https://doi.org/10.20290/estubtdb.1501639

Öz

In this study, N'-(4-hydroxy-3-methoxybenzylidene)naphtho[2,3-b]furan-2-carbohydrazide (HMFC) compound containing Schiff base was theoretically examined. The HMFC molecule was calculated theoretically using the 6-311G(d,p), B3LYP/B3PW91 basis sets and methods. The energy gap of the molecule, the lowest unoccupied molecular orbital (LUMO), and the highest occupied molecular orbital (HOMO) values were calculated using the identical set and two distinct methods. The HMFC compound's molecular stability was examined by applying the natural bond orbital (NBO) study. The Nonlinear optical Properties (NLO) of HMFC molecule, thermodynamic parameters, and Molecular Electrostatic Potential Maps (MEP) were calculated. Molecular docking study of the HMFC compound was performed by downloading two different enzyme codes (PDB ID: 1T46 and PDB ID: 3SXR) from PDB (Protein Data Bank) and examining in silico the cancer-associated proteins to analyze the potential anticancer activity. In the docking analysis, it showed a score of -7.356 kcal/mol for the 1T46 enzyme code in the compound, while it showed a score of -6.866 kcal/mol for the 3SXR enzyme code. Whether the HMFC molecule has drug properties was analyzed using the absorption, distribution, metabolism, and excretion (ADME) approach.

Kaynakça

  • [1] Raczuk E, Dmochowska B, Samaszko-Fiertek J and Madaj J. Different Schiff bases structure, importance and classification. Molecules. 2022; 27(3): 787.
  • [2] Ashraf MA, Mahmood K, Wajid A, Maah MJ and Yusoff I. Synthesis, characterization and biological activity of Schiff bases. IPCBEE. 2011; 10(1): 185.
  • [3] Da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins C V and de Fátima Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011; 2(1): 1-8.
  • [4] El‐Sonbati A, Mahmoud W, Mohamed GG, Diab M, Morgan SM and Abbas S. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl. Organomet. Chem. 2019; 33(9): 5048.
  • [5] Dalia SA, Afsan F, Hossain MS, Khan MN, Zakaria C, Zahan M-E and Ali M. A short review on chemistry of schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 2018; 6(3): 2859-2867.
  • [6] Zhang J, Xu L and Wong W-Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018; 355(180-198.
  • [7] Juyal VK, Pathak A, Panwar M, Thakuri SC, Prakash O, Agrwal A and Nand V. Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem. 2023; 122825.
  • [8] Hussain W, Amir A and Rasool N. Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach. Struct. Chem. 2020; 31: 1363-1374.
  • [9] Bubaš M, and Sancho-Parramon J. DFT-Based Approach Enables Deliberate Tuning of Alloy Nanostructure Plasmonic Properties. J. Phys. Chem. C. 2021; 125(43): 24032-24042.
  • [10] Gertig C, Leonhard K and Bardow A. Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. Curr. Opin. Chem. Eng. 2020; (27): 89-97.
  • [11] Liu Q, Tang K, Zhang J, Feng Y, Xu C, Liu L, Du J and Zhang L, QMaC: a quantum mechanics/machine learning-based computational tool for chemical product design, in Computer Aided Chemical Engineering. 2020, Elsevier. p. 1807-1812.
  • [12] Papadopoulos-A I, Tsivintzelis I, Linke P and Seferlis P. Computer aided molecular design: fundamentals, methods and applications. Chem., Mol. Sci. and Chem. Eng. 2018;
  • [13] T. Michael J. Frisch G W, Bernhard Schlegel, Gustavo Scuseria, 2016.
  • [14] Release S. 3: Maestro Schrödinger. LLC, New York 2019.
  • [15] Gören K, Bağlan M and Çakmak İ. Dietanol Amin Ditiyokarbamat RAFT Ajanının 1H ve 13C NMR Spektrumlarının Teorik İncelenmesi. J. Integr. Sci. Technol. 2022; 12(3): 1677-1689.
  • [16] Gören K, Bağlan M and Yıldıko Ü. Melanoma Cancer Evaluation with ADME and Molecular Docking Analysis, DFT Calculations of (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl)-acrylate Molecule. JIST. 2024; 14(3): 1186-1199.
  • [16] Bağlan M, Gören K and Yıldıko Ü. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. Int. J. Chem. Technol. 2023; 7(1): 38-47.
  • [17] Kinaytürk NK. Elucidation of the Molecular Interaction Mechanism of Bromuconazole by DFT and Molecular Docking Methods. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 27(2): 266-272.
  • [18] Saraç K. Synthesis and Theoretical Chemical Calculations of 4-Chloromethyl-6,8-dimethylcoumarin Compound. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2018; 7(2): 311-319.
  • [19] Gören K and Yıldıko Ü. Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024; 28(2): 281-292.
  • [20] Bağlan M, Gören K and Yıldıko Ü. DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl) thiazolo [1, 2, 4] triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule. HJSE. 2023; 10(1): 11-19.
  • [21] Gümüş HP, Tamer Ö, Avcı D and Atalay Y. 4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi. Sakarya University Jounal of Science. 2015; 19(3): 303-311.
  • [22] Choudhary V, Bhatt A, Dash D and Sharma N. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. J. Comput. Chem. 2019; 40(27): 2354-2363.
  • [23] Mumit MA, Pal TK, Alam MA, Islam M, Paul S and Sheikh M C. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct. 2020; 1220(128715.
  • [24] Gören K, Bağlan M, Yıldıko Ü and Tahiroğlu V. Molecular Docking and DFT Analysis of Thiazolidinone-Bis Schiff Base for anti-Cancer and anti-Urease Activity. JIST. 2024; 14(2): 822-834.
  • [25] Bağlan M, Yıldıko Ü and Gören K. Computational Investigation of 5.5,7-trihydroxy-3,7-dimethoxy-4-4-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking. Adıyaman University Journal of Science. 2022; 12(2): 283-298.
  • [26] Lakshminarayanan S, Jeyasingh V, Murugesan K, Selvapalam N and Dass G. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. J. Photochem. Photobiol. 2021; 6(100022.
  • [27] Bağlan M, Yıldıko Ü and Gören K. DFT Calculations and Molecular Docking Study in 6-(2”-Pyrrolıdınone-5”-Yl)-(-) Epicatechin Molecule From Flavonoids. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler. 2023; 11(1): 43-55.
  • [28] Aziz A, Elantabli FM, Moustafa H, and El-Medani SM. Spectroscopic, DNA binding ability, biological activity, DFT calculations and non-linear optical properties (NLO) of novel Co (II), Cu (II), Zn (II), Cd (II) and Hg (II) complexes with ONS Schiff base. J. Mol. Struct. 2017; 1141(563-576.
  • [29] Gören K, Çimen E, Tahiroğlu V and Yıldıko Ü. Moleculer Docking and Theoretical Analysis of the (E)-5-((Z)-4-methylbenzylidene)-2-(((E)-4-methylbenzylidene)hydrazineylidene)-3-phenylthiazolidin-4-one Molecule. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2024; 13(3): 659-672.
  • [30] Shokr EK, Kamel MS, Abdel-Ghany H, Ali M and Abdou A. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno-[2, 3-b] thiophene azo dye derivatives. Mater. Chem. 2022; 290(126646.
  • [31] Khan AU, Khera RA, Anjum N, Shehzad RA, Iqbal S, Ayub K and Iqbal J. DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties. RSC advances. 2021; 11(14): 7779-7789.
  • [32] Tanriverdi A, Altun K, Yildiko Ü and Çakmak İ. Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl)phenoxy)phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies. Int. J. Chem. Technol. 2021; 5(2): 147-155.
  • [33] Demircioğlu Z, Kaştaş ÇA and Büyükgüngör O. The spectroscopic (FT-IR, UV–vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene) amino] benzonitrile. Mol. Biomol. Spectrosc. 2015; 139(539-548.
  • [34] Kazachenko AS, Akman F, Abdelmoulahi H, Issaoui N, Malyar YN, Al-Dossary O and Wojcik MJ. Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J. Mol. Liq. 2021; 342(117475.
  • [35] Pisano MB, Kumar A, Medda R, Gatto G, Pal R, Fais A, Era B, Cosentino S, Uriarte E and Santana L. Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules. 2019; 24(15): 2815.
  • [36] Obuotor TM, Kolawole AO, Apalowo OE and Akamo AJ. Metabolic profiling, ADME pharmacokinetics, molecular docking studies and antibacterial potential of Phyllantus muellerianus leaves. Tradit. Med. 2023; 23(2): 427-442.
  • [37] Hamed IA, Ashida N and Nagamatsu T. Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs. BMCL. 2008; 16(2): 922-940.
  • [38] Liu F et al. Discovery of a Selective Irreversible BMX Inhibitor for Prostate Cancer. Chem. Biol. 2013; 8(7): 1423-1428.

ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N'-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE

Yıl 2025, Cilt: 13 Sayı: 1, 7 - 23, 28.02.2025
https://doi.org/10.20290/estubtdb.1501639

Öz

In this study, N'-(4-hydroxy-3-methoxybenzylidene)naphtho[2,3-b]furan-2-carbohydrazide (HMFC) compound containing Schiff base was theoretically examined. The HMFC molecule was calculated theoretically using the 6-311G(d,p), B3LYP/B3PW91 basis sets and methods. The energy gap of the molecule, the lowest unoccupied molecular orbital (LUMO), and the highest occupied molecular orbital (HOMO) values were calculated using the identical set and two distinct methods. The HMFC compound's molecular stability was examined by applying the natural bond orbital (NBO) study. The Nonlinear optical Properties (NLO) of HMFC molecule, thermodynamic parameters, and Molecular Electrostatic Potential Maps (MEP) were calculated. Molecular docking study of the HMFC compound was performed by downloading two different enzyme codes (PDB ID: 1T46 and PDB ID: 3SXR) from PDB (Protein Data Bank) and examining in silico the cancer-associated proteins to analyze the potential anticancer activity. In the docking analysis, it showed a score of -7.356 kcal/mol for the 1T46 enzyme code in the compound, while it showed a score of -6.866 kcal/mol for the 3SXR enzyme code. Whether the HMFC molecule has drug properties was analyzed using the absorption, distribution, metabolism, and excretion (ADME) approach.

Kaynakça

  • [1] Raczuk E, Dmochowska B, Samaszko-Fiertek J and Madaj J. Different Schiff bases structure, importance and classification. Molecules. 2022; 27(3): 787.
  • [2] Ashraf MA, Mahmood K, Wajid A, Maah MJ and Yusoff I. Synthesis, characterization and biological activity of Schiff bases. IPCBEE. 2011; 10(1): 185.
  • [3] Da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins C V and de Fátima Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011; 2(1): 1-8.
  • [4] El‐Sonbati A, Mahmoud W, Mohamed GG, Diab M, Morgan SM and Abbas S. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl. Organomet. Chem. 2019; 33(9): 5048.
  • [5] Dalia SA, Afsan F, Hossain MS, Khan MN, Zakaria C, Zahan M-E and Ali M. A short review on chemistry of schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 2018; 6(3): 2859-2867.
  • [6] Zhang J, Xu L and Wong W-Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018; 355(180-198.
  • [7] Juyal VK, Pathak A, Panwar M, Thakuri SC, Prakash O, Agrwal A and Nand V. Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem. 2023; 122825.
  • [8] Hussain W, Amir A and Rasool N. Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach. Struct. Chem. 2020; 31: 1363-1374.
  • [9] Bubaš M, and Sancho-Parramon J. DFT-Based Approach Enables Deliberate Tuning of Alloy Nanostructure Plasmonic Properties. J. Phys. Chem. C. 2021; 125(43): 24032-24042.
  • [10] Gertig C, Leonhard K and Bardow A. Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. Curr. Opin. Chem. Eng. 2020; (27): 89-97.
  • [11] Liu Q, Tang K, Zhang J, Feng Y, Xu C, Liu L, Du J and Zhang L, QMaC: a quantum mechanics/machine learning-based computational tool for chemical product design, in Computer Aided Chemical Engineering. 2020, Elsevier. p. 1807-1812.
  • [12] Papadopoulos-A I, Tsivintzelis I, Linke P and Seferlis P. Computer aided molecular design: fundamentals, methods and applications. Chem., Mol. Sci. and Chem. Eng. 2018;
  • [13] T. Michael J. Frisch G W, Bernhard Schlegel, Gustavo Scuseria, 2016.
  • [14] Release S. 3: Maestro Schrödinger. LLC, New York 2019.
  • [15] Gören K, Bağlan M and Çakmak İ. Dietanol Amin Ditiyokarbamat RAFT Ajanının 1H ve 13C NMR Spektrumlarının Teorik İncelenmesi. J. Integr. Sci. Technol. 2022; 12(3): 1677-1689.
  • [16] Gören K, Bağlan M and Yıldıko Ü. Melanoma Cancer Evaluation with ADME and Molecular Docking Analysis, DFT Calculations of (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl)-acrylate Molecule. JIST. 2024; 14(3): 1186-1199.
  • [16] Bağlan M, Gören K and Yıldıko Ü. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. Int. J. Chem. Technol. 2023; 7(1): 38-47.
  • [17] Kinaytürk NK. Elucidation of the Molecular Interaction Mechanism of Bromuconazole by DFT and Molecular Docking Methods. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 27(2): 266-272.
  • [18] Saraç K. Synthesis and Theoretical Chemical Calculations of 4-Chloromethyl-6,8-dimethylcoumarin Compound. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2018; 7(2): 311-319.
  • [19] Gören K and Yıldıko Ü. Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2024; 28(2): 281-292.
  • [20] Bağlan M, Gören K and Yıldıko Ü. DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl) thiazolo [1, 2, 4] triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule. HJSE. 2023; 10(1): 11-19.
  • [21] Gümüş HP, Tamer Ö, Avcı D and Atalay Y. 4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi. Sakarya University Jounal of Science. 2015; 19(3): 303-311.
  • [22] Choudhary V, Bhatt A, Dash D and Sharma N. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. J. Comput. Chem. 2019; 40(27): 2354-2363.
  • [23] Mumit MA, Pal TK, Alam MA, Islam M, Paul S and Sheikh M C. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct. 2020; 1220(128715.
  • [24] Gören K, Bağlan M, Yıldıko Ü and Tahiroğlu V. Molecular Docking and DFT Analysis of Thiazolidinone-Bis Schiff Base for anti-Cancer and anti-Urease Activity. JIST. 2024; 14(2): 822-834.
  • [25] Bağlan M, Yıldıko Ü and Gören K. Computational Investigation of 5.5,7-trihydroxy-3,7-dimethoxy-4-4-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking. Adıyaman University Journal of Science. 2022; 12(2): 283-298.
  • [26] Lakshminarayanan S, Jeyasingh V, Murugesan K, Selvapalam N and Dass G. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. J. Photochem. Photobiol. 2021; 6(100022.
  • [27] Bağlan M, Yıldıko Ü and Gören K. DFT Calculations and Molecular Docking Study in 6-(2”-Pyrrolıdınone-5”-Yl)-(-) Epicatechin Molecule From Flavonoids. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler. 2023; 11(1): 43-55.
  • [28] Aziz A, Elantabli FM, Moustafa H, and El-Medani SM. Spectroscopic, DNA binding ability, biological activity, DFT calculations and non-linear optical properties (NLO) of novel Co (II), Cu (II), Zn (II), Cd (II) and Hg (II) complexes with ONS Schiff base. J. Mol. Struct. 2017; 1141(563-576.
  • [29] Gören K, Çimen E, Tahiroğlu V and Yıldıko Ü. Moleculer Docking and Theoretical Analysis of the (E)-5-((Z)-4-methylbenzylidene)-2-(((E)-4-methylbenzylidene)hydrazineylidene)-3-phenylthiazolidin-4-one Molecule. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2024; 13(3): 659-672.
  • [30] Shokr EK, Kamel MS, Abdel-Ghany H, Ali M and Abdou A. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno-[2, 3-b] thiophene azo dye derivatives. Mater. Chem. 2022; 290(126646.
  • [31] Khan AU, Khera RA, Anjum N, Shehzad RA, Iqbal S, Ayub K and Iqbal J. DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties. RSC advances. 2021; 11(14): 7779-7789.
  • [32] Tanriverdi A, Altun K, Yildiko Ü and Çakmak İ. Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl)phenoxy)phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies. Int. J. Chem. Technol. 2021; 5(2): 147-155.
  • [33] Demircioğlu Z, Kaştaş ÇA and Büyükgüngör O. The spectroscopic (FT-IR, UV–vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene) amino] benzonitrile. Mol. Biomol. Spectrosc. 2015; 139(539-548.
  • [34] Kazachenko AS, Akman F, Abdelmoulahi H, Issaoui N, Malyar YN, Al-Dossary O and Wojcik MJ. Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J. Mol. Liq. 2021; 342(117475.
  • [35] Pisano MB, Kumar A, Medda R, Gatto G, Pal R, Fais A, Era B, Cosentino S, Uriarte E and Santana L. Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules. 2019; 24(15): 2815.
  • [36] Obuotor TM, Kolawole AO, Apalowo OE and Akamo AJ. Metabolic profiling, ADME pharmacokinetics, molecular docking studies and antibacterial potential of Phyllantus muellerianus leaves. Tradit. Med. 2023; 23(2): 427-442.
  • [37] Hamed IA, Ashida N and Nagamatsu T. Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs. BMCL. 2008; 16(2): 922-940.
  • [38] Liu F et al. Discovery of a Selective Irreversible BMX Inhibitor for Prostate Cancer. Chem. Biol. 2013; 8(7): 1423-1428.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Kenan Gören 0000-0001-5068-1762

Mehmet Bağlan 0000-0002-7089-7111

Ümit Yıldıko 0000-0001-8627-9038

Yayımlanma Tarihi 28 Şubat 2025
Gönderilme Tarihi 15 Haziran 2024
Kabul Tarihi 25 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Gören, K., Bağlan, M., & Yıldıko, Ü. (2025). ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 13(1), 7-23. https://doi.org/10.20290/estubtdb.1501639
AMA Gören K, Bağlan M, Yıldıko Ü. ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE. Estuscience - Theory. Şubat 2025;13(1):7-23. doi:10.20290/estubtdb.1501639
Chicago Gören, Kenan, Mehmet Bağlan, ve Ümit Yıldıko. “ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 13, sy. 1 (Şubat 2025): 7-23. https://doi.org/10.20290/estubtdb.1501639.
EndNote Gören K, Bağlan M, Yıldıko Ü (01 Şubat 2025) ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13 1 7–23.
IEEE K. Gören, M. Bağlan, ve Ü. Yıldıko, “ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE”, Estuscience - Theory, c. 13, sy. 1, ss. 7–23, 2025, doi: 10.20290/estubtdb.1501639.
ISNAD Gören, Kenan vd. “ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13/1 (Şubat 2025), 7-23. https://doi.org/10.20290/estubtdb.1501639.
JAMA Gören K, Bağlan M, Yıldıko Ü. ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE. Estuscience - Theory. 2025;13:7–23.
MLA Gören, Kenan vd. “ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 13, sy. 1, 2025, ss. 7-23, doi:10.20290/estubtdb.1501639.
Vancouver Gören K, Bağlan M, Yıldıko Ü. ANALYSIS BY DFT, ADME AND DOCKING STUDIES OF N’-(4-HYDROXY-3-METHOXYBENZYLIDENE)NAPHTHO[2,3-B]FURAN-2-CARBOHYDRAZIDE. Estuscience - Theory. 2025;13(1):7-23.