Araştırma Makalesi
BibTex RIS Kaynak Göster

FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS

Yıl 2025, Cilt: 13 Sayı: 2, 122 - 130, 25.08.2025
https://doi.org/10.20290/estubtdb.1753779

Öz

In this study, we examine the fuzzy structures of ∝ (alpha) and β (beta) planes on the Klein quadric in the projective space
PG(5,2). Utilizing a maximal flag construction and its intersection with the hyperplane , we define a hierarchical
membership function based on fuzzy set theory. Each point of PG(5,2) is assigned a degree of membership in [0,1] according
to its level in the flag, satisfying ​. Through this framework, we analyze three alpha planes and three beta planes passing
through the base point , classifying them by their fuzzy equivalence. It is shown that two alpha planes are fuzzy equivalent,
while the beta planes are distinguished by the fuzzy degrees of the lines they share with the base plane. This approach bridges
combinatorial projective geometry and fuzzy logic, enriching the geometric understanding of the Klein correspondence
through fuzzification.

Kaynakça

  • [1] Akça Z, Altıntaş A. Fuzzy counterpart of Klein quadric. International Electronic Journal of Geometry, 2023;16, 680-688.
  • [2] Akça Z, Bayar A, Ekmekçi S, Van Maldeghem H. Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets and Systems, 2006;157 (24): 3237-3247.
  • [3] Akça Z, Bayar A, Ekmekçi S. On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces. Communications Mathematics and Statics, 2007; 55 (2), 17-23.
  • [4] Akça Z, Bayar A, Ekmekçi S, Kaya R, Thas JA, Van Maldeghem H. Generalized lax Veronesean embeddings of projective spaces. Ars Combin, 2012; 103, 65-80.
  • [5] Bayar A, Akça Z, Ekmekçi S. A note on fibered projective plane geometry. Information Sciences 2008; 178, 1257-1262.
  • [6] Ekmekçi S, Bayar A, Akça Z. On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 2009; 40, 2146-2151.
  • [7] Hirschfeld J, Thas J. General Galois Geometries. Springer Monongraphs in Mathematics, 2016.
  • [8] Karakaya MM, Akça Z. On The Fuzzification of Greek Planes of Klein Quadric. Eskişehir Technical University Journal of Science and Technology, 2024; 25 (2), 300-307.
  • [9] Klein F. Uber die Transformation der Allgemeinen Gleichung des zweiten Grades zwischen Linien - Koordinaten auf eine kanoishche Form. Mathematische Annalen, 1884; 23, 539-578.
  • [10] Kuijken L and Maldeghem, H. On the definition and some conjectures of fuzzy projective planes by Gupta and Ray, and a new definition of fuzzy building geometries. Fuzzy Sets And Systems, 2003; 138 (3), 667–685.
  • [11] Kuijken L, Van Maldeghem H, Kerre EE. Fuzzy projective geometries from fuzzy vector spaces. A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1998; 1331-1338.
  • [12] Lubczonok P. Fuzzy Vector Spaces. Fuzzy Sets and Systems, 1990; 38, 329-343.
  • [13] Plücker J. On a new geometry of space. Philosophical Transactions of the Royal Society of London 1865; 155, 725-791.
  • [14] Zadeh L. Fuzzy Sets. Information and Control, 1965; 8, 338-353.

FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS

Yıl 2025, Cilt: 13 Sayı: 2, 122 - 130, 25.08.2025
https://doi.org/10.20290/estubtdb.1753779

Öz

In this study, we examine the fuzzy structures of α (alpha) and β (beta) planes on the Klein quadric in the projective space PG(5,2). Utilizing a maximal flag construction (q,U_1^', U_2^',U_3^',U_4^',PG(5,2)) and its intersection with the hyperplane H^5 (2), we define a hierarchical membership function λ^('' )based on fuzzy set theory. Each point of PG(5,2) is assigned a degree of membership in [0,1] according to its level in the flag, satisfying a_1≥a_2≥a_3≥a_4≥a_5≥a_6. Through this framework, we analyze three alpha planes and three beta planes passing through the base point q=(0,0,0,1,0,0), classifying them by their fuzzy equivalence. It is shown that two alpha planes are fuzzy equivalent, while the beta planes are distinguished by the fuzzy degrees of the lines they share with the base plane. This approach bridges combinatorial projective geometry and fuzzy logic, enriching the geometric understanding of the Klein correspondence through fuzzification.

Kaynakça

  • [1] Akça Z, Altıntaş A. Fuzzy counterpart of Klein quadric. International Electronic Journal of Geometry, 2023;16, 680-688.
  • [2] Akça Z, Bayar A, Ekmekçi S, Van Maldeghem H. Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets and Systems, 2006;157 (24): 3237-3247.
  • [3] Akça Z, Bayar A, Ekmekçi S. On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces. Communications Mathematics and Statics, 2007; 55 (2), 17-23.
  • [4] Akça Z, Bayar A, Ekmekçi S, Kaya R, Thas JA, Van Maldeghem H. Generalized lax Veronesean embeddings of projective spaces. Ars Combin, 2012; 103, 65-80.
  • [5] Bayar A, Akça Z, Ekmekçi S. A note on fibered projective plane geometry. Information Sciences 2008; 178, 1257-1262.
  • [6] Ekmekçi S, Bayar A, Akça Z. On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 2009; 40, 2146-2151.
  • [7] Hirschfeld J, Thas J. General Galois Geometries. Springer Monongraphs in Mathematics, 2016.
  • [8] Karakaya MM, Akça Z. On The Fuzzification of Greek Planes of Klein Quadric. Eskişehir Technical University Journal of Science and Technology, 2024; 25 (2), 300-307.
  • [9] Klein F. Uber die Transformation der Allgemeinen Gleichung des zweiten Grades zwischen Linien - Koordinaten auf eine kanoishche Form. Mathematische Annalen, 1884; 23, 539-578.
  • [10] Kuijken L and Maldeghem, H. On the definition and some conjectures of fuzzy projective planes by Gupta and Ray, and a new definition of fuzzy building geometries. Fuzzy Sets And Systems, 2003; 138 (3), 667–685.
  • [11] Kuijken L, Van Maldeghem H, Kerre EE. Fuzzy projective geometries from fuzzy vector spaces. A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1998; 1331-1338.
  • [12] Lubczonok P. Fuzzy Vector Spaces. Fuzzy Sets and Systems, 1990; 38, 329-343.
  • [13] Plücker J. On a new geometry of space. Philosophical Transactions of the Royal Society of London 1865; 155, 725-791.
  • [14] Zadeh L. Fuzzy Sets. Information and Control, 1965; 8, 338-353.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Münevvere Mine Karakaya 0000-0003-1517-3409

Ziya Akça 0000-0001-6379-0546

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 29 Temmuz 2025
Kabul Tarihi 9 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Karakaya, M. M., & Akça, Z. (2025). FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 13(2), 122-130. https://doi.org/10.20290/estubtdb.1753779
AMA Karakaya MM, Akça Z. FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS. Estuscience - Theory. Ağustos 2025;13(2):122-130. doi:10.20290/estubtdb.1753779
Chicago Karakaya, Münevvere Mine, ve Ziya Akça. “FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13, sy. 2 (Ağustos 2025): 122-30. https://doi.org/10.20290/estubtdb.1753779.
EndNote Karakaya MM, Akça Z (01 Ağustos 2025) FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13 2 122–130.
IEEE M. M. Karakaya ve Z. Akça, “FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS”, Estuscience - Theory, c. 13, sy. 2, ss. 122–130, 2025, doi: 10.20290/estubtdb.1753779.
ISNAD Karakaya, Münevvere Mine - Akça, Ziya. “FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13/2 (Ağustos2025), 122-130. https://doi.org/10.20290/estubtdb.1753779.
JAMA Karakaya MM, Akça Z. FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS. Estuscience - Theory. 2025;13:122–130.
MLA Karakaya, Münevvere Mine ve Ziya Akça. “FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 13, sy. 2, 2025, ss. 122-30, doi:10.20290/estubtdb.1753779.
Vancouver Karakaya MM, Akça Z. FUZZY CHARACTERIZATION OF ALPHA AND BETA PLANES ON THE KLEIN QUADRIC IN PG(5,2) VIA MAXIMAL FLAGS. Estuscience - Theory. 2025;13(2):122-30.