Derleme
BibTex RIS Kaynak Göster

RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES

Yıl 2024, , 52 - 62, 30.01.2024
https://doi.org/10.18036/estubtdc.1236273

Öz

Heavy metals, which are high in the environment, are substances that have a high toxic effect even at low concentrations. Heavy metals taken into the organism through mouth, respiration and skin cannot be eliminated by the body's excretory pathways. In addition, since they have a durable structure, they participate in the food chain and accumulate in various body tissues. With the increase in industrial activities, heavy metal pollution has also emerged and has increased day by day. Lead is an element that is widely used in industry because it has a low melting temperature. However, it is known that lead, like other heavy metals, has an effect on problems such as environmental pollution and health problems. Occupational diseases such as lead poisoning occur as a result of direct exposure to lead. Direct exposure in this way can also cause death. Lead causes undesirable conditions such as increase of reactive oxygen species (ROS), emergence of oxidative stress and weakening of antioxidant system. Lead disrupts the prooxidant/antioxidant ratio. As a result, effects such as an increase in ROS and thus damage to the basic components of the cell such as lipid, protein and nucleic acid are observed.In particular, lead inhibits enzymes and prevents some enzymes from acting as antioxidants. As a result of exposure to lead, there is a decrease in the defense abilities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and ascorbic acid in blood and tissues. Lead increases lipid peroxidation and thus causes oxidative damage. Evaluation of the effect of lead at the cellular level is important in terms of developing solutions for the toxic effects of lead. In this study, the effect of lead on the cellular level in the organism and its effects on free radicals, ROS and oxidative stress were evaluated.

Kaynakça

  • [1] Ünsal V. Biochemical approach to heavy metals. Editors: Köse O, Kirik E. New Approaches in Scientific Research-1, Ankara, Türkiye; Berikan Matbaacılık, 2018. pp. 107-123.
  • [2] Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015; 7, 2189–2212.
  • [3] Méndez-Armenta M, Nava-Ruiz C, Fernández-Valverde F, Sánchez-García A, Rios C. Histochemical changes in muscle of rats exposed subchronically to low doses of heavy metals. Environ Toxicol Phar 2011; 32(1), 107-112.
  • [4] Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA. The detrimental effects of lead on human and animal health, Vet World 2016; 9(6), 660-671.
  • [5] Ahamed M, Siddiqui MKJ. Environmental lead toxicity and nutritional factors. Clin Nutr 2007; 26(4), 400-408.
  • [6] Mutlu N, Ersan Y, Nur G, Koç E. Protective effect of caffeic acid phenethyl ester against lead acetate-induced hepatotoxicity in mice. Kafkas Univ Vet Fak Derg 17(Suppl A) 2011; 1-5.
  • [7] Spivey, A. The weight of lead: Effects add up in adults. Environ Health Persp 2007; 115, 30-36.
  • [8] Özbolat G, Tuli A. Effects of heavy metal toxicity on human health. Archives Medical Review Journal 2016; 25 (4), 502- 521.
  • [9] Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxico 2012; 5(2), 47.
  • [10] Abadin H, Taylor, J, Buser M.C, Scinicariello, F, Przybyla, J, Klotzbach, J.M, Diamond G.L, Chappell L.L, McIlroy L.A. Toxicological profile for lead: Draft for public comment, Agency for Toxic Substances and Disease Registry, USA, 2019.
  • [11] Erişir M. The effect of Naringenin on oxidative stress in some tissues (heart, lung, brain, spleen, muscle) of lead-treated rats. Atatürk Üniversitesi Vet Bil Derg 2018; 13(1), 34-41.
  • [12] Kabel AM. Free radicals and antioxidants: Role of enzymes and nutrition. World Journal of Nutrition and Health 2014; 2(3), 35-38.
  • [13] Toyokuni S. Reactive oxygen species‐induced molecular damage and its application in pathology. Pathol Int 1999; 49(2), 91-102.
  • [14] Akkuş, I. Serbest Radikaller ve Fizyopatolojik Etkileri, first ed., Konya, Türkiye: Mimoza Yayınları, 1995.
  • [15] Üner N, Oruç E, Sevgiler Y. Oxidative stress-related and Atpase effects of etoxazole in different tissues of Oreochromis niloticus. Environ Toxicol Phar 2005; 20(1), 99-106.
  • [16] Miller JK, Brzezinska-Slebodzinska E, Madsen, FC. Oxidative stress, antioxidants, and animal function. J Dairy Sci 1993; 76(9), 2812-2823.
  • [17] Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3), 176-186.
  • [18] Akpoyraz M, Durak I. Serbest radikallerin biyolojik etkileri. The Journal of the Faculty of Medicine 1995; 48:253-262.
  • [19] Bahorun T, Soobrattee MA, Luximon-Ramma V, Aruoma OI. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update 2006; 1(2), 25-41.
  • [20] Kopáni M, Celec P, Danišovič L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clinica chimica açta 2006; 364(1), 61-66.
  • [21] Kurtdede E, Pekcan M, Karagül H. Free radicals, reactive oxygen species and relationship with oxidative stress. Atatürk Üniversitesi Vet Bil Derg 2018; 13(3), 373-379.
  • [22] Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2), 89.
  • [23] Derviş E. Oral antioksidanlar. Dermatoz 2011; 2(1), 263-267.
  • [24] Kulaksız R. In vitro evaluation of saanen buck semen frozen with extenders added different antioxidants. PhD, Ankara University, Ankara, Turkiye, 2009.
  • [25] Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020; 17(12), 4385.
  • [26] Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 2009; 11(4), 861-905.
  • [27] Akbulut C, Kaymak G, Esmer HE, Yön ND, Kayhan FE. Oxidative stress mechanisms induced by heavy metals and pesticides in fish. Ege J Fish Aqua Sci 2014; 31(3): 155-160.
  • [28] Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review 2006; 11(2).
  • [29] Mercan U. Importance of free radicals in toxicology. Journal of Yüzüncü Yıl University Faculty of Veterinary Medicine 2004; 15 (1-2), 91-96.
  • [30] Sezer K, Keskin M. Role of the free oxygen radicals on the pathogenesis of the diseases. Fırat University Veterinary Journal of Health Sciences 2014; 28(1), 49-56.
  • [31] Yazıcı C, Köse K. Melatonin: The antioxidant power of darkness. Erciyes University Journal of Health Sciences 2004; 13(2), 56-65.
  • [32] Hsu PC, Guo YL. Antioxidant nutrients and lead toxicity. Toxicology 2002; 180(1), 33-44.
  • [33] Çaylak E. Lead toxication and oxidative stress in children and antioxidant effects of thiol compounds. J Child 2010; 10(1), 13-23.
  • [34] Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci 2020; 18(1), 335-343.
  • [35] Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ Toxicol Phar 2019; 68, 101-108.
  • [36] Collin MS et al. Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances 2022; 7, 100094.
  • [37] Sandhir R, Gill KD. Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 1995; 48(1):91-7.
  • [38] Yiin SJ, Lin TH. Lead-catalyzed peroxidation of essential unsaturated fatty acid. Biol Trace Elem Res 1995; 50(2):16772.
  • [39] Gürer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Bio Med 2000; 29(10):927-45.
  • [40] Çaylak E, Aytekin M, Halifeoglu I. Antioxidant effects of methionine, alpha-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp Toxicol Path 2008; 60(4-5):289-94.
  • [41] İriş C, Çınar M. Antioxidant vitamins and its effects on heavy metal toxicity. Bulletin of Veterinary Pharmacology and Toxicology Association 2019; 10(3), 135-151.
  • [42] Adonaylo VN, Oteiza PI. Pb2+ promotes lipid oxidation and alterations in membrane physical properties. Toxicology 1999; 132(1), 19-32.
  • [43] Süzen HS. Delta-aminolevulinic acid dehydratase (ALAD) genetic polymorphism in Turkish population. J Fac Pharm 2001; 30(1), 27-38.
  • [44] Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021; 262, 128350.
  • [45] Canli Ö et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 2017; 32, 869–883.
  • [46] Habtemariam S. Modulation of reactive oxygen species in health and disease. Antioxidants 2019; 8(11), 513.
  • [47] Elzagallaai AA, Sultan EA, Bend JR, Abuzgaia AM, Loubani E, Rieder MJ. Role of oxidative stress in hypersensitivity reactions to sulfonamides. The Journal of Clinical Pharmacology 2020; 60(3), 409-421.
  • [48] Ito Y, Niiya Y, Kurita H, Shima S, Sarai S. Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int Arch Occ Env Hea 1985; 56(2), 119-127.
  • [49] McGowan C, Donaldson WE. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks. Biol Trace Elem Res 1986; 10(1), 37-46.
  • [50] Chiba M, Shinohara A, Matsushita K, Watanabe H, Inaba Y. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. The Tohoku Journal of Experimental Medicine 1996; 178(1), 49-62.
  • [51] Blaylock R.L. Neurodegeneration and aging of the central nervous system: Prevention and treatment by phytochemicals and metabolic nutrients. Integrative Med 1998; 1(3), 117-133
  • [52] Matović V, Buha A., Ðukić-Ćosić D & Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 2015; 78, 130-140.
  • [53] Farmand F, Ehdaie A, Roberts CK, Sindhu RK. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environ Res 2005; 98(1), 33-39.
  • [54] Mohammad IK, Mahdi AA, Raviraja A, Najmul I, Iqbal A, Thuppil V. Oxidative stress in painters exposed to low lead levels. Arhiv za higijenu rada i toksikologiju 2008; 59(3), 161.
  • [55] Omobowale TO, Oyagbemi AA, Akinrinde AS, Saba AB, Daramola OT, Ogunpolu BS, Olopade JO. Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ Toxicol Phar 2014; 37(3), 1202-1211.
  • [56] Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med-Us 2011; 2011, 9.
  • [57] Patra RC, Swarup D, Dwivedi SK. Antioxidant effects of α tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 2001; 162(2), 81-88.
  • [58] Hsu PC, Hsu CC, Liu MY, Chen LY, Guo YL. Lead-induced changes in spermatozoa function and metabolism. J. Toxicol. Environ. Health 1998; 55, 45-64.
  • [59] Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015; 5(35), 27986-28006.
  • [60] Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med 2003; 24(6), 345-351.
  • [61] Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S, Imenshahidi M, Karimi G. Protective effect of lycopene against chemical and natural toxins: a review. Biofactors 2018; 45, 5–23.
  • [62] Bacanli M, Başaran N, Başaran AA. Lycopene: is it beneficial to human health as an antioxidant?. Turkish Journal of Pharmaceutical Sciences 2017; 14(3), 311.
  • [63] Altıner A, Atalay H, Bilal T. Vitamin E as an antioxidant. Balıkesir Health Sciences Journal 2017; 6(3), 149-157.
  • [64] Bashandy SA. Beneficial effect of combined administration of vitamin C and vitamin E in amelioration of chronic lead hepatotoxicity. The Egyptian Journal of Hospital Medicine 2006; 23(1), 371-384.

RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES

Yıl 2024, , 52 - 62, 30.01.2024
https://doi.org/10.18036/estubtdc.1236273

Öz

Çevrede yüksek oranda bulunan ağır metaller, düşük konsantrasyonlarda dahi toksik etkisi yüksek olan maddelerdir. Ağız, solunum ve deri yoluyla organizmaya alınan ağır metaller, vücudun boşaltım yolları ile atılamamaktadır. Ayrıca dayanıklı bir yapıya sahip olduklarından besin zincirine katılarak çeşitli vücut dokularında birikmektedir. Böylece enzimatik ve yapısal fonksiyonları inhibe ederek, DNA ve kromozom hasarlarına, solunum sistemi ile sinir sisteminde kalıcı hasarlara yol açmaktadır. Endüstriyel faaliyetlerin artışı ile ağır metal kirliliği de ortaya çıkmış ve her geçen gün kirlilik artmıştır. Kurşun, düşük erime sıcaklığına sahip olduğundan endüstri ve sanayi alanında rağbet gören bir elementtir. Ancak kurşunun da diğer ağır metaller gibi çevre kirliliği ve sağlık sorunlarına yol açtığı bilinmektedir. Dolayısıyla bu alan çalışanlarında kurşuna doğrudan maruziyet sonucu kurşun zehirlenmeleri gibi meslek hastalıkları ortaya çıkmaktadır. Bu şekilde doğrudan maruz kalınması ölüme de sebebiyet vermektedir. Kurşun, reaktif oksijen türlerinin (ROS) artması, oksidatif stresin ortaya çıkması ve antioksidan sistemin zayıflaması gibi istenmeyen durumlara neden olmaktadır. Kurşunun prooksidan/antioksidan oranını bozması sonucu ROS artışı, dolayısıyla da lipid, protein ve nükleik asit gibi hücrenin temel bileşenlerinin zarar görmesi gibi etkiler ortaya çıkmaktadır. Kurşun özellikle enzimleri inhibe ederek bazı enzimlerin antioksidan görevi görmesini engellemektedir. Kurşuna maruziyet sonucu kan ve dokularda katalaz (CAT), süperoksit dismutaz (SOD), glutatyon (GSH) ve askorbik asit gibi antioksidan enzimlerin savunma yeteneklerinde düşüş olmaktadır. Kurşun, lipit peroksidasyonunu arttırmaktadır ve dolayısıyla oksidatif hasara yol açmaktadır. Kurşunun hücresel düzeyde etkisinin değerlendirilmesi, kurşunun toksik etkileri ile ilgili çözüm önerilerinin geliştirilmesi bakımından önemlidir. Bu derlemede kurşunun organizmadaki hücresel düzeyde etkisi ile serbest radikaller, ROS ve oksidatif stres üzerinde etkileri bakımından değerlendirme yapılmıştır.

Kaynakça

  • [1] Ünsal V. Biochemical approach to heavy metals. Editors: Köse O, Kirik E. New Approaches in Scientific Research-1, Ankara, Türkiye; Berikan Matbaacılık, 2018. pp. 107-123.
  • [2] Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015; 7, 2189–2212.
  • [3] Méndez-Armenta M, Nava-Ruiz C, Fernández-Valverde F, Sánchez-García A, Rios C. Histochemical changes in muscle of rats exposed subchronically to low doses of heavy metals. Environ Toxicol Phar 2011; 32(1), 107-112.
  • [4] Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA. The detrimental effects of lead on human and animal health, Vet World 2016; 9(6), 660-671.
  • [5] Ahamed M, Siddiqui MKJ. Environmental lead toxicity and nutritional factors. Clin Nutr 2007; 26(4), 400-408.
  • [6] Mutlu N, Ersan Y, Nur G, Koç E. Protective effect of caffeic acid phenethyl ester against lead acetate-induced hepatotoxicity in mice. Kafkas Univ Vet Fak Derg 17(Suppl A) 2011; 1-5.
  • [7] Spivey, A. The weight of lead: Effects add up in adults. Environ Health Persp 2007; 115, 30-36.
  • [8] Özbolat G, Tuli A. Effects of heavy metal toxicity on human health. Archives Medical Review Journal 2016; 25 (4), 502- 521.
  • [9] Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxico 2012; 5(2), 47.
  • [10] Abadin H, Taylor, J, Buser M.C, Scinicariello, F, Przybyla, J, Klotzbach, J.M, Diamond G.L, Chappell L.L, McIlroy L.A. Toxicological profile for lead: Draft for public comment, Agency for Toxic Substances and Disease Registry, USA, 2019.
  • [11] Erişir M. The effect of Naringenin on oxidative stress in some tissues (heart, lung, brain, spleen, muscle) of lead-treated rats. Atatürk Üniversitesi Vet Bil Derg 2018; 13(1), 34-41.
  • [12] Kabel AM. Free radicals and antioxidants: Role of enzymes and nutrition. World Journal of Nutrition and Health 2014; 2(3), 35-38.
  • [13] Toyokuni S. Reactive oxygen species‐induced molecular damage and its application in pathology. Pathol Int 1999; 49(2), 91-102.
  • [14] Akkuş, I. Serbest Radikaller ve Fizyopatolojik Etkileri, first ed., Konya, Türkiye: Mimoza Yayınları, 1995.
  • [15] Üner N, Oruç E, Sevgiler Y. Oxidative stress-related and Atpase effects of etoxazole in different tissues of Oreochromis niloticus. Environ Toxicol Phar 2005; 20(1), 99-106.
  • [16] Miller JK, Brzezinska-Slebodzinska E, Madsen, FC. Oxidative stress, antioxidants, and animal function. J Dairy Sci 1993; 76(9), 2812-2823.
  • [17] Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3), 176-186.
  • [18] Akpoyraz M, Durak I. Serbest radikallerin biyolojik etkileri. The Journal of the Faculty of Medicine 1995; 48:253-262.
  • [19] Bahorun T, Soobrattee MA, Luximon-Ramma V, Aruoma OI. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update 2006; 1(2), 25-41.
  • [20] Kopáni M, Celec P, Danišovič L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clinica chimica açta 2006; 364(1), 61-66.
  • [21] Kurtdede E, Pekcan M, Karagül H. Free radicals, reactive oxygen species and relationship with oxidative stress. Atatürk Üniversitesi Vet Bil Derg 2018; 13(3), 373-379.
  • [22] Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2), 89.
  • [23] Derviş E. Oral antioksidanlar. Dermatoz 2011; 2(1), 263-267.
  • [24] Kulaksız R. In vitro evaluation of saanen buck semen frozen with extenders added different antioxidants. PhD, Ankara University, Ankara, Turkiye, 2009.
  • [25] Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020; 17(12), 4385.
  • [26] Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 2009; 11(4), 861-905.
  • [27] Akbulut C, Kaymak G, Esmer HE, Yön ND, Kayhan FE. Oxidative stress mechanisms induced by heavy metals and pesticides in fish. Ege J Fish Aqua Sci 2014; 31(3): 155-160.
  • [28] Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review 2006; 11(2).
  • [29] Mercan U. Importance of free radicals in toxicology. Journal of Yüzüncü Yıl University Faculty of Veterinary Medicine 2004; 15 (1-2), 91-96.
  • [30] Sezer K, Keskin M. Role of the free oxygen radicals on the pathogenesis of the diseases. Fırat University Veterinary Journal of Health Sciences 2014; 28(1), 49-56.
  • [31] Yazıcı C, Köse K. Melatonin: The antioxidant power of darkness. Erciyes University Journal of Health Sciences 2004; 13(2), 56-65.
  • [32] Hsu PC, Guo YL. Antioxidant nutrients and lead toxicity. Toxicology 2002; 180(1), 33-44.
  • [33] Çaylak E. Lead toxication and oxidative stress in children and antioxidant effects of thiol compounds. J Child 2010; 10(1), 13-23.
  • [34] Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci 2020; 18(1), 335-343.
  • [35] Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ Toxicol Phar 2019; 68, 101-108.
  • [36] Collin MS et al. Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances 2022; 7, 100094.
  • [37] Sandhir R, Gill KD. Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 1995; 48(1):91-7.
  • [38] Yiin SJ, Lin TH. Lead-catalyzed peroxidation of essential unsaturated fatty acid. Biol Trace Elem Res 1995; 50(2):16772.
  • [39] Gürer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Bio Med 2000; 29(10):927-45.
  • [40] Çaylak E, Aytekin M, Halifeoglu I. Antioxidant effects of methionine, alpha-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp Toxicol Path 2008; 60(4-5):289-94.
  • [41] İriş C, Çınar M. Antioxidant vitamins and its effects on heavy metal toxicity. Bulletin of Veterinary Pharmacology and Toxicology Association 2019; 10(3), 135-151.
  • [42] Adonaylo VN, Oteiza PI. Pb2+ promotes lipid oxidation and alterations in membrane physical properties. Toxicology 1999; 132(1), 19-32.
  • [43] Süzen HS. Delta-aminolevulinic acid dehydratase (ALAD) genetic polymorphism in Turkish population. J Fac Pharm 2001; 30(1), 27-38.
  • [44] Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021; 262, 128350.
  • [45] Canli Ö et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 2017; 32, 869–883.
  • [46] Habtemariam S. Modulation of reactive oxygen species in health and disease. Antioxidants 2019; 8(11), 513.
  • [47] Elzagallaai AA, Sultan EA, Bend JR, Abuzgaia AM, Loubani E, Rieder MJ. Role of oxidative stress in hypersensitivity reactions to sulfonamides. The Journal of Clinical Pharmacology 2020; 60(3), 409-421.
  • [48] Ito Y, Niiya Y, Kurita H, Shima S, Sarai S. Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int Arch Occ Env Hea 1985; 56(2), 119-127.
  • [49] McGowan C, Donaldson WE. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks. Biol Trace Elem Res 1986; 10(1), 37-46.
  • [50] Chiba M, Shinohara A, Matsushita K, Watanabe H, Inaba Y. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. The Tohoku Journal of Experimental Medicine 1996; 178(1), 49-62.
  • [51] Blaylock R.L. Neurodegeneration and aging of the central nervous system: Prevention and treatment by phytochemicals and metabolic nutrients. Integrative Med 1998; 1(3), 117-133
  • [52] Matović V, Buha A., Ðukić-Ćosić D & Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 2015; 78, 130-140.
  • [53] Farmand F, Ehdaie A, Roberts CK, Sindhu RK. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environ Res 2005; 98(1), 33-39.
  • [54] Mohammad IK, Mahdi AA, Raviraja A, Najmul I, Iqbal A, Thuppil V. Oxidative stress in painters exposed to low lead levels. Arhiv za higijenu rada i toksikologiju 2008; 59(3), 161.
  • [55] Omobowale TO, Oyagbemi AA, Akinrinde AS, Saba AB, Daramola OT, Ogunpolu BS, Olopade JO. Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ Toxicol Phar 2014; 37(3), 1202-1211.
  • [56] Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med-Us 2011; 2011, 9.
  • [57] Patra RC, Swarup D, Dwivedi SK. Antioxidant effects of α tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 2001; 162(2), 81-88.
  • [58] Hsu PC, Hsu CC, Liu MY, Chen LY, Guo YL. Lead-induced changes in spermatozoa function and metabolism. J. Toxicol. Environ. Health 1998; 55, 45-64.
  • [59] Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015; 5(35), 27986-28006.
  • [60] Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med 2003; 24(6), 345-351.
  • [61] Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S, Imenshahidi M, Karimi G. Protective effect of lycopene against chemical and natural toxins: a review. Biofactors 2018; 45, 5–23.
  • [62] Bacanli M, Başaran N, Başaran AA. Lycopene: is it beneficial to human health as an antioxidant?. Turkish Journal of Pharmaceutical Sciences 2017; 14(3), 311.
  • [63] Altıner A, Atalay H, Bilal T. Vitamin E as an antioxidant. Balıkesir Health Sciences Journal 2017; 6(3), 149-157.
  • [64] Bashandy SA. Beneficial effect of combined administration of vitamin C and vitamin E in amelioration of chronic lead hepatotoxicity. The Egyptian Journal of Hospital Medicine 2006; 23(1), 371-384.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Seda Vural Aydın 0000-0002-4546-5827

Yayımlanma Tarihi 30 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Vural Aydın, S. (2024). RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 13(1), 52-62. https://doi.org/10.18036/estubtdc.1236273
AMA Vural Aydın S. RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES. Estuscience - Life. Ocak 2024;13(1):52-62. doi:10.18036/estubtdc.1236273
Chicago Vural Aydın, Seda. “RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13, sy. 1 (Ocak 2024): 52-62. https://doi.org/10.18036/estubtdc.1236273.
EndNote Vural Aydın S (01 Ocak 2024) RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13 1 52–62.
IEEE S. Vural Aydın, “RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES”, Estuscience - Life, c. 13, sy. 1, ss. 52–62, 2024, doi: 10.18036/estubtdc.1236273.
ISNAD Vural Aydın, Seda. “RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13/1 (Ocak 2024), 52-62. https://doi.org/10.18036/estubtdc.1236273.
JAMA Vural Aydın S. RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES. Estuscience - Life. 2024;13:52–62.
MLA Vural Aydın, Seda. “RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 13, sy. 1, 2024, ss. 52-62, doi:10.18036/estubtdc.1236273.
Vancouver Vural Aydın S. RELATIONSHIP OF LEAD WITH FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES. Estuscience - Life. 2024;13(1):52-6.