Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ

Yıl 2021, Cilt: 10 Sayı: 1, 27 - 37, 25.01.2021
https://doi.org/10.18036/estubtdc.668123

Öz

Bu çalışmada, ZnO (Çinko oksit) nanopartiküllerince (NP) kirletilmiş ortamları temizleyebilmesi için Pistia stratiotes L. bitkisinin akümülasyon yeteneğinden yararlanılmıştır. Farklı ZnO NP (70nm) (1-5-10-20-100-250-500mgl-1) konsantrasyonlarında, bitkinin büyüme oranı (RGR), klorofil a, klorofil b, toplam karotenoid miktarı ve bitkide akümüle edilen Zn miktarı ICP-MS cihazı kullanılarak tespit edilmiştir.

ZnO NP’nin bitki büyüme oranı üzerine etkisi 20 mg L-1’lik konsantrasyondan sonra negatif yönde gözlenmiştir. Artan ZnO NP konsantrasyonlarına bağlı olarak fotosentetik pigment miktarları, kontrol grubuna göre değişik oranlarda azalma göstermiştir. Farklı konsantrasyon değerlerine bağlı olarak akümülasyon miktarlarınin birbirinden farklılık gösterdiği, en yüksek Zn akümülasyonu ise 500 mg L-1’lük konsantrasyonda 7494,99 μg g-1 olarak tespit edilmiştir. Elde ettiğimiz sonuçlar nanopartiküllerin bitkilerce akümüle edilmesi konusuna ışık tutacak nitelikte olup, çalışma nanopartiküllerin toksisitesi konusunda yapılacak çalışmalara da örnek teşkil etmektedir.

Destekleyen Kurum

TUBİTAK (2209-A/2019)

Proje Numarası

2209-A/2019

Teşekkür

Bu çalışma TUBİTAK (2209-A/2019)tarafından desteklenmiştir. Desteklerinden dolayı TUBİTAK’a teşekkür ederiz.

Kaynakça

  • [1] Tripathi DK, Gaur S, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad MS, Dubey NK, Chauhan DK. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017; 2:2-12.
  • [2] Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Pro Nat Sci-Mater 2012; 22: 693-700.
  • [3] Gunalan S, Sivaraj R, Rajendran V. Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011; 46: 2560-2566.
  • [4] Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014; 11:1-8.
  • [5] Shamsuzzaman MA, Khanam H, Aljawfi RN. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 2013; 10: 1530-1536.
  • [6] Bhatte KD, Sawant DN, Pinjari DV, Pandit AB, Bhanage BM. One pot green synthesis of nano sized zinc oxide by sonochemical method. Mater. Lett. 2012; 77: 93-95.
  • [7] Tunca EÜ. Nanoteknolojinin Temeli Nanopartiküller ve Nanopartiküllerin Fitoremediasyonu, Ordu Univ. J. Sci. Tech. 2015; 5: 23-34.
  • [8] Fu L, Fu Z. Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 2015; 41: 2492-2496.
  • [9] Thema FT, Manikandan E, Dhlamini MS, Maaza M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 2015; 161: 124-127.
  • [10] Som C, Wick P, Krug H, Nowack B. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Intl. 2011; 37:1131–1142.
  • [11] Rajiv P, Rajeshwari S, Vencatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochım. Acta A 2013; 112: 384-387.
  • [12] Hunt R. Plant growth analiyis. Studies in biology. London: Edward Arnold, 1978.
  • [13] Criado MN. Comparative study of the effect of the maturation procces of the olive fruit on the chlorophyll and careteonid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chem. 2005; 100:748-755.
  • [14] Witham FH, Blaydes DF, Deulin RM. Experiments in plant physiology. Van Nostrand Reinhold Company, New York, pp 245, 1971.
  • [15] Leblebici Z, Aksoy A. Growth and heavy metal accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment, Water Air Soil Poll. 2011; 214: 175-184.
  • [16] Pokhrel LR, Dubey B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 2013; 452: 321–332.
  • [17] Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 2013; 47: 9496–9504.
  • [18] Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2010; 29; 669–675.
  • [19] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008; 42: 5580–5585.
  • [20] Stampoulis D, Sinha SK. White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009; 43: 9473–9479.
  • [21] Oukarroum A, Barhoumi L, Pirastru L, Dewez, D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem. 2013; 32: 902-907.
  • [22] Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009; 32: 577–584.
  • [23] Mukherjee A, Peralta J., Bandyopadhyay S, Rico CM, Zhao L, Gardea JL. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 2014; 6: 132–138.
  • [24] Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sus. Chem. Engi. 2013; 1: 768–778.
  • [25] Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014; 112: 105–113.
  • [26] Servin AD, Morales MI, Castillo H, Hernandez JA, Munoz B, Zhao L, Nunez JE, Peralta JR, Gardea JL. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 2013; 47: 11592–11598.
  • [27] Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int. J. Phytoremediat. 2013; 15: 142-153.
  • [28] Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 2013; 47: 13822–13830.
  • [29] Shi JY, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds ( Landoltia punctata ), nanoparticulate copper oxide is more inhibitory than the soluble copperin the bulk solution. Environ. Pollut. 2011; 159: 1277-1282.
  • [30] Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015; 7: 1584–1594.
  • [31] Lee WM, An YJ. Effects of zinc oxide and titanium dioxidenanoparticles on gren algae under visible, UVA, and UVB irradiations: No evidenceof enhanced algal toxicity under UV pre-irradiation. Chemosphere 2013; 91: 536-544.
  • [32] Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int. J. Phytoremediat. 2013; 15:142-153.
  • [33] Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J. Contam. Hydrol. 2013; 146:63-73.

DETERMINATION OF ACCUMULATION ABILITY OF ZINC OXIDE NANOPARTICLE (ZnO NP) by Pistia stratiotes L. (WATER LETTUCE) AND INVESTIGATION OF TOXIC EFFECT OF NANOPARTICLE

Yıl 2021, Cilt: 10 Sayı: 1, 27 - 37, 25.01.2021
https://doi.org/10.18036/estubtdc.668123

Öz

In this study, accumulation ability of Pistia stratiotes L. was used to clean the contaminated environments by ZnO (Zinc oxide) nanoparticles (NP). At different concentrations of ZnO NP (70nm) (1-5-10-20-100-250-500 mgl-1), plant growth rate (RGR), chlorophyll a, chlorophyll b, total carotenoid amount were measured and the amount of Zn accumulated in the plant determined using ICP-MS device.

The effect of ZnO NP on plant growth rate was observed negatively after a concentration of 20 mg L-1. Due to the increasing concentrations of ZnO NP, the amount of photosynthetic pigment decreased at different rates compared to the control group. Depending on the different concentration values, the amount of accumulation varies from each other, the highest Zn accumulation at a concentration of 500 mg L-1 was found to be 7494,99 μg g-1. Our results; nanoparticles to shed light on the issue of accumulation by plants, the study is also an example of studies on the toxicity of nanoparticles.

Proje Numarası

2209-A/2019

Kaynakça

  • [1] Tripathi DK, Gaur S, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad MS, Dubey NK, Chauhan DK. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017; 2:2-12.
  • [2] Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Pro Nat Sci-Mater 2012; 22: 693-700.
  • [3] Gunalan S, Sivaraj R, Rajendran V. Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011; 46: 2560-2566.
  • [4] Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014; 11:1-8.
  • [5] Shamsuzzaman MA, Khanam H, Aljawfi RN. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 2013; 10: 1530-1536.
  • [6] Bhatte KD, Sawant DN, Pinjari DV, Pandit AB, Bhanage BM. One pot green synthesis of nano sized zinc oxide by sonochemical method. Mater. Lett. 2012; 77: 93-95.
  • [7] Tunca EÜ. Nanoteknolojinin Temeli Nanopartiküller ve Nanopartiküllerin Fitoremediasyonu, Ordu Univ. J. Sci. Tech. 2015; 5: 23-34.
  • [8] Fu L, Fu Z. Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 2015; 41: 2492-2496.
  • [9] Thema FT, Manikandan E, Dhlamini MS, Maaza M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 2015; 161: 124-127.
  • [10] Som C, Wick P, Krug H, Nowack B. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Intl. 2011; 37:1131–1142.
  • [11] Rajiv P, Rajeshwari S, Vencatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochım. Acta A 2013; 112: 384-387.
  • [12] Hunt R. Plant growth analiyis. Studies in biology. London: Edward Arnold, 1978.
  • [13] Criado MN. Comparative study of the effect of the maturation procces of the olive fruit on the chlorophyll and careteonid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chem. 2005; 100:748-755.
  • [14] Witham FH, Blaydes DF, Deulin RM. Experiments in plant physiology. Van Nostrand Reinhold Company, New York, pp 245, 1971.
  • [15] Leblebici Z, Aksoy A. Growth and heavy metal accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment, Water Air Soil Poll. 2011; 214: 175-184.
  • [16] Pokhrel LR, Dubey B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 2013; 452: 321–332.
  • [17] Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 2013; 47: 9496–9504.
  • [18] Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2010; 29; 669–675.
  • [19] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008; 42: 5580–5585.
  • [20] Stampoulis D, Sinha SK. White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009; 43: 9473–9479.
  • [21] Oukarroum A, Barhoumi L, Pirastru L, Dewez, D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem. 2013; 32: 902-907.
  • [22] Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009; 32: 577–584.
  • [23] Mukherjee A, Peralta J., Bandyopadhyay S, Rico CM, Zhao L, Gardea JL. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 2014; 6: 132–138.
  • [24] Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sus. Chem. Engi. 2013; 1: 768–778.
  • [25] Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014; 112: 105–113.
  • [26] Servin AD, Morales MI, Castillo H, Hernandez JA, Munoz B, Zhao L, Nunez JE, Peralta JR, Gardea JL. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 2013; 47: 11592–11598.
  • [27] Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int. J. Phytoremediat. 2013; 15: 142-153.
  • [28] Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 2013; 47: 13822–13830.
  • [29] Shi JY, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds ( Landoltia punctata ), nanoparticulate copper oxide is more inhibitory than the soluble copperin the bulk solution. Environ. Pollut. 2011; 159: 1277-1282.
  • [30] Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015; 7: 1584–1594.
  • [31] Lee WM, An YJ. Effects of zinc oxide and titanium dioxidenanoparticles on gren algae under visible, UVA, and UVB irradiations: No evidenceof enhanced algal toxicity under UV pre-irradiation. Chemosphere 2013; 91: 536-544.
  • [32] Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int. J. Phytoremediat. 2013; 15:142-153.
  • [33] Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J. Contam. Hydrol. 2013; 146:63-73.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Ramazan Bakar 0000-0003-3891-1267

Zeliha Leblebici 0000-0002-6127-3809

Proje Numarası 2209-A/2019
Yayımlanma Tarihi 25 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Bakar, R., & Leblebici, Z. (2021). ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 10(1), 27-37. https://doi.org/10.18036/estubtdc.668123
AMA Bakar R, Leblebici Z. ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ. Estuscience - Life. Ocak 2021;10(1):27-37. doi:10.18036/estubtdc.668123
Chicago Bakar, Ramazan, ve Zeliha Leblebici. “ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia Stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 10, sy. 1 (Ocak 2021): 27-37. https://doi.org/10.18036/estubtdc.668123.
EndNote Bakar R, Leblebici Z (01 Ocak 2021) ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 10 1 27–37.
IEEE R. Bakar ve Z. Leblebici, “ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ”, Estuscience - Life, c. 10, sy. 1, ss. 27–37, 2021, doi: 10.18036/estubtdc.668123.
ISNAD Bakar, Ramazan - Leblebici, Zeliha. “ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia Stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 10/1 (Ocak 2021), 27-37. https://doi.org/10.18036/estubtdc.668123.
JAMA Bakar R, Leblebici Z. ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ. Estuscience - Life. 2021;10:27–37.
MLA Bakar, Ramazan ve Zeliha Leblebici. “ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia Stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 10, sy. 1, 2021, ss. 27-37, doi:10.18036/estubtdc.668123.
Vancouver Bakar R, Leblebici Z. ÇİNKO OKSİT NANOPARTİKÜLÜNÜN (ZnO NP) Pistia stratiotes L. (SU MARULU) TARAFINDAN AKÜMÜLASYON YETENEĞİNİN BELİRLENMESİ VE NANOPARTIKÜLÜN TOKSİK ETKİSİNİN İNCELENMESİ. Estuscience - Life. 2021;10(1):27-3.