Araştırma Makalesi
BibTex RIS Kaynak Göster

ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS

Yıl 2022, Cilt: 11 Sayı: 1, 1 - 10, 19.01.2022
https://doi.org/10.18036/estubtdc.866279

Öz

Synthetically produced miRNA molecules plays an important role as biomarker to examine and investigate the diagnosis of some diseases including cancer. In order to develop a sensitive electrochemical biosensor system for the detection of miRNA molecules, the anti-miRNA molecules are synthesized and immobilized on the biosensor surfaces and observe the signal changes via a proper measurement. Immobilization time and temperature along with the anti-miRNA concentration are critically important for an appropriate observation of the miRNA detection sensitivity of the prepared biosensor system. In this regard, synthetically produced anti-miRNA (anti-miR451(G)) was purchased and diluted into different concentration by using phosphate buffer solution. Then, the solutions were immobilized on the screen printed electrodes (SPEs) and the guanine oxidation signal of the anti-miRNA molecules were observed via differential pulse voltammetry method (DPV). An appropriate concentration of the solution was selected and dropped on the SPEs and held on at different temperatures (-18, +5 and +25 oC) for 1, 3, 14 and 21 days and DPV measurements were conducted to investigate the optimum immobilization time and temperature. The result shown that guanine oxidation signal was increased by increasing the concentration of the genetic molecules in the immobilization solution and increased less after that point when the concentration increased more because the surface reached to a certain saturation value . The guanine oxidation signal revealed that the best suitable storing temperature after the immobilization was +5 oC determined.

Destekleyen Kurum

The Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

118M231

Teşekkür

The present study was part of a research project funded by The Scientific & Technological Research Council of Turkey (TUBITAK, Project no. 118M231).

Kaynakça

  • [1] Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med, 2003; 348: 2339-2347.
  • [2] Rezaei H, Motovali-bashi M, Radfar S. An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: Combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification. Anal Chim Acta, 2019; 1092: 66-74.
  • [3] Dequeker E, Stuhrmann M, Morris M.A., Casals T., Castellani C, Claustres M, Cuppens H, des Georges M, Ferec C., Macek M, Pignatti PF., Scheffer H, Schwartz M., Witt M, Schwarz M, Girodon, E. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders - Updated European recommendations. Eur J Hum Genet, 2009; 17: 51–65.
  • [4] Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou, Z, Tsoi HW, Choi GK, Tam, AR, Cheng VC, Chan KH, Tsang OT. Yuen KY. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens . J Clin Microbiol, 2020; 58: e00310-20.
  • [5] Van TT, Miller J, Warshauer DM, Reisdorf E, Jernigan D, Humes R, Shult PA. Pooling nasopharyngeal/throat swab specimens to increase testing capacity for influenza viruses by PCR. J Clin Microbiol, 2012; 50: 891-896.
  • [6] Carpini G, Lucarelli F, Marrazza G, Mascini M. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens Bioelectron, 2004; 20: 167-175.
  • [7] Malecka K, Stachyra A, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecka H, Radecki J. Electrochemical genosensor based on disc and screen printed gold electrodes for detection of specific DNA and RNA sequences derived from Avian Influenza Virus H5N1. Sensors Actuators B Chem, 2016; 224: 290-297.
  • [8] Fanjul-Bolado P, Hernández-Santos D, Lamas-Ardisana PJ, Martín-Pernía A, Costa-García A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim Acta, 2008; 53: 3635–3642.
  • [9] Kondo T, Sakamoto H, Kato T, Horitani M, Shitanda I, Itagaki M, Yuasa M. Screen-printed diamond electrode: A disposable sensitive electrochemical electrode. Electrochem Commun, 2011; 13: 1546-1549.
  • [10] Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal Chem, 2016; 79: 114-126.
  • [11] Das R, Sharma MK, Rao VK, Bhattacharya BK, Garg I, Venkatesh V, Upadhyay S. An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. J Biotechnol, 2014; 188, 9-16.
  • [12] Kloosterman WP, Plasterk RH. The Diverse Functions of MicroRNAs in Animal Development and Disease. Dev Cell, 2006; 11: 441-450.
  • [13] Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu K, Huang Q, Zhong Y. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumor Biol, 2016; 37: 13751–13761.
  • [14] Gartel AL, Kandel ES. miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol, 2008; 18: 103-110.
  • [15] Wang XC, Tian LL, Jiang XY, Wang YY, Li DG, She Y, Chang JH., Meng AM. The expression and function of miRNA-451 in non-small cell lung cancer. Cancer Lett, 2011; 311: 203–209.
  • [16] Zhou D, Lin X, Gao W, Piao J, Li S, He N, Qian Z, Zhao M, Gong X. A novel template repairing-PCR (TR-PCR) reaction platform for microRNA detection using translesional synthesis on DNA templates containing abasic sites. Chem Commun, 2019; 55: 2932-2935.
  • [17] Dong R, Shen Z, Zheng C, Chen G, Zheng S. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia. Sci Rep, 2016; 6: 21084.
  • [18] Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem, 2019; 581: 113349.
  • [19] Wang H, Zhang G, Wu Z, Lu B, Yuan D, Li X, Lu Z. MicoRNA-451 is a novel tumor suppressor via targeting c-myc in head and neck squamous cell carcinomas. J Cancer Res Ther, 2015; 11: 216-221.
  • [20] Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 2008; 7: 2152–2159.
  • [21] Yuan J, Lang J, Liu C, Zhou K, Chen L, Liu Y. The expression and function of miRNA-451 in osteosarcoma. Med Oncol, 2015; 32, 1-7.
  • [22] Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta, 2020; 210: 120641.
  • [23] Yammouri G, Mandli J, Mohammadi H, Amine A. Development of an electrochemical label-free biosensor for microRNA-125a detection using pencil graphite electrode modified with different carbon nanomaterials. J Electroanal Chem, 2017; 806: 75-81.
  • [24] Erdem A, Eksin E, Congur G. Indicator-free electrochemical biosensor for microRNA detection based on carbon nanofibers modified screen printed electrodes. J Electroanal Chem, 2015; 755: 167-173.
  • [25] Azab SM, Elhakim HA, Fekry A. The strategy of nanoparticles and the flavone chrysin to quantify miRNA-let 7a in zepto-molar level: Its application as tumor marker. J Mol Struct, 2019; 1196: 647-652.
  • [26] Ganguly A, Benson J, Papakonstantinou P. Sensitive chronocoulometric detection of miRNA at screen-printed electrodes modified by gold-decorated MoS2 nanosheets. ACS Appl Bio Mater, 2018; 1: 1184-1194.
  • [27] Bagni G, Hernandez S, Mascini M, Sturchio E, Boccia P, Marconi S. DNA biosensor for rapid detection of genotoxic compounds in soil samples. Sensors, 2005; 5: 394-410.
  • [28] Lin X, Ni Y, Pei X, Kokot S. Electrochemical detection of DNA damage induced by clenbuterol at a reduced graphene oxide-Nafion modified glassy carbon electrode. Anal Methods, 2017; 9: 1105-1111.

ELEKTROKİMYASAL miRNA BİYOSENSÖRLER İÇİN ANTİ-miRNA MOLEKÜLÜNÜN YÜZEY-BASKI ELEKTROTLAR ÜZERİNE İMMOBİLİZASYONUNUN OPTİMİZASYONU

Yıl 2022, Cilt: 11 Sayı: 1, 1 - 10, 19.01.2022
https://doi.org/10.18036/estubtdc.866279

Öz

miR-1841 geni insan genomunda bulunan ve bazı kanser türlerinin erken tespiti için biyobelirteç olduğu literatürde belirtilmektedir. Genetik moleküllerin rollerinin kavranmasında sentetik olarak üretilebilen miRNA molekülleri ile yapılan çalışmalar önemli yer tutmaktadır. miRNA moleküllerinin elektrokimyasal olarak tespit ve analizleri için öncelikle anti-miRNA molekülleri elektrot yüzeyine tutturulup ardından miRNA molekülleri ile etkileştirilerek hibridizasyona bağlı sinyal değişiklikleri incelenmektedir. miRNA molekülerinin tespitindeki hassaslıkta immobilizasyon süresi ve sıcaklığının yanı sıra yüzeye tutturulan anti-miRNA konsantrasyonuda kritik öneme sahiptir. Bu kapsamda yapılan bu çalışmada, sentetik olarak üretilen anti-miRNA (anti-miR451(G)) molekülleri farklı konsantrasyonlarda fosfat tampon çözeltisi kullanılarak seyreltilmiştir. Daha sonar bu çözeltiler yüzey-baskı elektrotlar (SPEs) yüzeylerine immobilize edilerek diferansiyel puls voltametri (DPV) metodu ile guanine oksidasyon sinyaleri incelenmiştir. Uygun konsantrasyonda hazırlanan çözelti damlatılmış SPE yüzeyler -18, +5 ve +25 oC sıcaklıklarda 1, 3, 14 ve 21 gün aralıklarda bekletilip DPV ölçümleri yapılarak optimum immobilizasyon süre ve sıcaklığı tespit edilmeye çalışılmıştır. DPV ölçüm sonuçlarına göre anti-miRNA’lardaki guanine oksidasyon sinyali immobilizasyon çözeltisinde bulunan anti-miRNA miktarına bağlı olarak belirli bir konsantrasyona kadar dramatik bir şekilde artmıştır daha sonra konsantrasyon artsa bile yüzeyin belirli bir doygunluk değerine ulaştığı için daha az artma eğilimine girmiştir. Ölçüm sonuçları değerlendirildiğinde SPE yüzeylerine tutturulmuş anti-miRNA moleküllerinin en yi bekleme sıcaklığının +5 oC olduğu gözlemlenmiştir.

Proje Numarası

118M231

Kaynakça

  • [1] Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med, 2003; 348: 2339-2347.
  • [2] Rezaei H, Motovali-bashi M, Radfar S. An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: Combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification. Anal Chim Acta, 2019; 1092: 66-74.
  • [3] Dequeker E, Stuhrmann M, Morris M.A., Casals T., Castellani C, Claustres M, Cuppens H, des Georges M, Ferec C., Macek M, Pignatti PF., Scheffer H, Schwartz M., Witt M, Schwarz M, Girodon, E. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders - Updated European recommendations. Eur J Hum Genet, 2009; 17: 51–65.
  • [4] Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou, Z, Tsoi HW, Choi GK, Tam, AR, Cheng VC, Chan KH, Tsang OT. Yuen KY. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens . J Clin Microbiol, 2020; 58: e00310-20.
  • [5] Van TT, Miller J, Warshauer DM, Reisdorf E, Jernigan D, Humes R, Shult PA. Pooling nasopharyngeal/throat swab specimens to increase testing capacity for influenza viruses by PCR. J Clin Microbiol, 2012; 50: 891-896.
  • [6] Carpini G, Lucarelli F, Marrazza G, Mascini M. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens Bioelectron, 2004; 20: 167-175.
  • [7] Malecka K, Stachyra A, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecka H, Radecki J. Electrochemical genosensor based on disc and screen printed gold electrodes for detection of specific DNA and RNA sequences derived from Avian Influenza Virus H5N1. Sensors Actuators B Chem, 2016; 224: 290-297.
  • [8] Fanjul-Bolado P, Hernández-Santos D, Lamas-Ardisana PJ, Martín-Pernía A, Costa-García A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim Acta, 2008; 53: 3635–3642.
  • [9] Kondo T, Sakamoto H, Kato T, Horitani M, Shitanda I, Itagaki M, Yuasa M. Screen-printed diamond electrode: A disposable sensitive electrochemical electrode. Electrochem Commun, 2011; 13: 1546-1549.
  • [10] Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal Chem, 2016; 79: 114-126.
  • [11] Das R, Sharma MK, Rao VK, Bhattacharya BK, Garg I, Venkatesh V, Upadhyay S. An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. J Biotechnol, 2014; 188, 9-16.
  • [12] Kloosterman WP, Plasterk RH. The Diverse Functions of MicroRNAs in Animal Development and Disease. Dev Cell, 2006; 11: 441-450.
  • [13] Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu K, Huang Q, Zhong Y. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumor Biol, 2016; 37: 13751–13761.
  • [14] Gartel AL, Kandel ES. miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol, 2008; 18: 103-110.
  • [15] Wang XC, Tian LL, Jiang XY, Wang YY, Li DG, She Y, Chang JH., Meng AM. The expression and function of miRNA-451 in non-small cell lung cancer. Cancer Lett, 2011; 311: 203–209.
  • [16] Zhou D, Lin X, Gao W, Piao J, Li S, He N, Qian Z, Zhao M, Gong X. A novel template repairing-PCR (TR-PCR) reaction platform for microRNA detection using translesional synthesis on DNA templates containing abasic sites. Chem Commun, 2019; 55: 2932-2935.
  • [17] Dong R, Shen Z, Zheng C, Chen G, Zheng S. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia. Sci Rep, 2016; 6: 21084.
  • [18] Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem, 2019; 581: 113349.
  • [19] Wang H, Zhang G, Wu Z, Lu B, Yuan D, Li X, Lu Z. MicoRNA-451 is a novel tumor suppressor via targeting c-myc in head and neck squamous cell carcinomas. J Cancer Res Ther, 2015; 11: 216-221.
  • [20] Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 2008; 7: 2152–2159.
  • [21] Yuan J, Lang J, Liu C, Zhou K, Chen L, Liu Y. The expression and function of miRNA-451 in osteosarcoma. Med Oncol, 2015; 32, 1-7.
  • [22] Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta, 2020; 210: 120641.
  • [23] Yammouri G, Mandli J, Mohammadi H, Amine A. Development of an electrochemical label-free biosensor for microRNA-125a detection using pencil graphite electrode modified with different carbon nanomaterials. J Electroanal Chem, 2017; 806: 75-81.
  • [24] Erdem A, Eksin E, Congur G. Indicator-free electrochemical biosensor for microRNA detection based on carbon nanofibers modified screen printed electrodes. J Electroanal Chem, 2015; 755: 167-173.
  • [25] Azab SM, Elhakim HA, Fekry A. The strategy of nanoparticles and the flavone chrysin to quantify miRNA-let 7a in zepto-molar level: Its application as tumor marker. J Mol Struct, 2019; 1196: 647-652.
  • [26] Ganguly A, Benson J, Papakonstantinou P. Sensitive chronocoulometric detection of miRNA at screen-printed electrodes modified by gold-decorated MoS2 nanosheets. ACS Appl Bio Mater, 2018; 1: 1184-1194.
  • [27] Bagni G, Hernandez S, Mascini M, Sturchio E, Boccia P, Marconi S. DNA biosensor for rapid detection of genotoxic compounds in soil samples. Sensors, 2005; 5: 394-410.
  • [28] Lin X, Ni Y, Pei X, Kokot S. Electrochemical detection of DNA damage induced by clenbuterol at a reduced graphene oxide-Nafion modified glassy carbon electrode. Anal Methods, 2017; 9: 1105-1111.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik
Bölüm Makaleler
Yazarlar

Karima Sahtani Bu kişi benim 0000-0002-4424-8855

Yakup Aykut 0000-0002-5263-1985

Nilay Aladağ Tanik Bu kişi benim 0000-0002-4370-111X

Proje Numarası 118M231
Yayımlanma Tarihi 19 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 1

Kaynak Göster

APA Sahtani, K., Aykut, Y., & Aladağ Tanik, N. (2022). ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 11(1), 1-10. https://doi.org/10.18036/estubtdc.866279
AMA Sahtani K, Aykut Y, Aladağ Tanik N. ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS. Estuscience - Life. Ocak 2022;11(1):1-10. doi:10.18036/estubtdc.866279
Chicago Sahtani, Karima, Yakup Aykut, ve Nilay Aladağ Tanik. “ANTI-MiRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL MiRNA BIOSENSORS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11, sy. 1 (Ocak 2022): 1-10. https://doi.org/10.18036/estubtdc.866279.
EndNote Sahtani K, Aykut Y, Aladağ Tanik N (01 Ocak 2022) ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 1 1–10.
IEEE K. Sahtani, Y. Aykut, ve N. Aladağ Tanik, “ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS”, Estuscience - Life, c. 11, sy. 1, ss. 1–10, 2022, doi: 10.18036/estubtdc.866279.
ISNAD Sahtani, Karima vd. “ANTI-MiRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL MiRNA BIOSENSORS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11/1 (Ocak 2022), 1-10. https://doi.org/10.18036/estubtdc.866279.
JAMA Sahtani K, Aykut Y, Aladağ Tanik N. ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS. Estuscience - Life. 2022;11:1–10.
MLA Sahtani, Karima vd. “ANTI-MiRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL MiRNA BIOSENSORS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 11, sy. 1, 2022, ss. 1-10, doi:10.18036/estubtdc.866279.
Vancouver Sahtani K, Aykut Y, Aladağ Tanik N. ANTI-miRNA IMMOBILIZATION OPTIMIZATION ON THE SCREEN PRINTED ELECTRODES FOR ELECTROCHEMICAL miRNA BIOSENSORS. Estuscience - Life. 2022;11(1):1-10.