Araştırma Makalesi
BibTex RIS Kaynak Göster

Portland Çimentosu Priz Sürelerine Pirinç Kabuğu Külü Etkisinin ANFIS ile Tahmini

Yıl 2023, Cilt: 4 Sayı: 2, 34 - 42, 30.06.2023
https://doi.org/10.53608/estudambilisim.1298231

Öz

Bu çalışmada, pirinç kabuğu ikameli çimento hamurlarının priz süreleri uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS) ile tahmin edilmiştir. Çalışmanın ilk aşamasında, Portland çimentosu içerisine %0, %2.5, %5, %7.5, %10, %12.5 ve %15 oranlarında pirinç kabuğu külü ikame edilmiş olan çimento hamurlarının priz başlangıç ve priz sonu süreleri belirlenmiştir. İkinci aşamada, deneylerden elde edilen sonuçlarla gauss ve üçgen üyelik fonksiyonları kullanılarak iki model oluşturulmuş ve bu modeller yardımıyla priz başlangıç ve priz sonu süreleri tahmin edilmeye çalışılmıştır. Son aşamada ise modellerden elde edilen sonuçlarının güvenilirliği anlayabilmek için R2, MAPE ve RMSE olmak üzere üç farklı istatiksel yöntem kullanılmıştır. Elde edilen priz başlangıç sürelerine göre R2, MAPE ve RMSE değerleri sırasıyla; gauss üyelik fonksiyonları için 0.9912, 0.0167 ve 5.6537, üçgen üyelik fonksiyonları için ise 0.9957, 0.0119 ve 3.9661 olarak bulunmuştur. Priz sonu sürelerine göre ise R2, MAPE ve RMSE değerleri sırasıyla; gauss üyelik fonksiyonları için 0.9909, 0.0144 ve 5.8693, üçgen üyelik fonksiyonları için 0.9939, 0.0127 ve 4.8125 olarak tespit edilmiştir. İstatistiksel endeksler bir bütün olarak değerlendirildiğinde, priz başlangıç ve priz sonu süreleri açısından hem gauss hem de üçgen üyelik fonksiyonlarıyla oluşturulan modellerle gerçek değerlere çok yakın sonuçlar elde edildiği belirlenmiştir. Dolayısı ile her iki modelin de priz sürelerini tahmin etmek için güçlü modeller olduğu ifade edilebilir.

Destekleyen Kurum

Düzce Üniversitesi

Proje Numarası

2019.07.05.939

Teşekkür

Yazarlar, priz süresi deneyleri için destek sağlayan Ankara Baştaş Çimento Fabrikası çalışanlarına ve yöneticilerine teşekkür ederler.

Kaynakça

  • [1] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455.
  • [2] Vijayan, D. S., Devarajan, P., & Sivasuriyan, A. (2023). A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sustainable Energy Technologies and Assessments, 56, 103105.
  • [3] Kim, K. W., Park, K. T., Ates, F., Kim, H. G., & Woo, B. H. (2023). Effect of pretreated biomass fly ash on the mechanical properties and durability of cement mortar. Case Studies in Construction Materials, 18, e01754.
  • [4] Yuan, L., Qiu, J., Guo, Z., Zhang, S., Wan, X., & Sun, X. (2023). Microscale and macroscale strength behaviors of blast furnace slag-cement based materials: Modeling and analysis. Construction and Building Materials, 376, 131016.
  • [5] Koçak, Y. (2017). The effects of super plasticizer and trass on the cement hydration. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 23(3), 184-192, 2017.
  • [6] Vissa, S. V. K., Massion, C., Lu, Y., Bunger, A., & Radonjic, M. (2022). Zeolite-Enhanced Portland Cement: Solution for Durable Wellbore-Sealing Materials. Materials, 16(1), 30.
  • [7] Yi, W., Xiling, Z., Jinglin, Y., Wenxuan, W., & Tian, T. (2023). A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar. Science of The Total Environment, 858, 159705.
  • [8] Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528.
  • [9] Gonçalves, M. R. F., & Bergmann, C. P. (2007). Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Construction and Building Materials, 21(12), 2059-2065.
  • [10] Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306, 124762.
  • [11] Anto, G., Athira, K., Nair, N. A., Sai, T. Y., Yadav, A. L., & Sairam, V. (2022). Mechanical properties and durability of ternary blended cement paste containing rice husk ash and nano silica. Construction and Building Materials, 342, 127732.
  • [12] Kuffner, B. H. B., Tambara Júnior, L. U. D., Marangon, E., & Lübeck, A. (2023). Development of self-compacting concretes using rice husk or fly ashes and different cement types. REM-International Engineering Journal, 76, 9-19.
  • [13] Xia, Y., Liu, M., Zhao, Y., Guo, J., Chi, X., Du, J., ... & Shi, D. (2023). Hydration mechanism and environmental impacts of blended cements containing co-combustion ash of sewage sludge and rice husk: Compared with blended cements containing sewage sludge ash. Science of The Total Environment, 864, 161116.
  • [14] Nie, Y., Lu, J., Liu, Z., Meng, D., He, Z., & Shi, J. (2022). Mechanical, water resistance and environmental benefits of magnesium oxychloride cement incorporating rice husk ash. Science of The Total Environment, 849, 157871.
  • [15] Li, C., Jiang, D., Li, X., Lv, Y., & Wu, K. (2023). Autogenous shrinkage and hydration property of cement pastes containing rice husk ash. Case Studies in Construction Materials, 18, e01943.
  • [16] Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Contribution of rice husk ash to the properties of mortar and concrete: a review. Journal of American science, 6(3), 157-165.
  • [17] Hwang C. L., Chandra S., (1996). Waste Materials Used in Concrete Manufacturing. Noyes Publications, New Jersey, U.S.A.
  • [18] Hwang C. L., Wu D. S., (1989). Properties of Cement Paste Containing Rice Husk Ash. American Concrete Institute, 114: 733-762.
  • [19] TS EN 197-1. Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • [20] Nazari, A., Khalaj, G., & Riahi, S. (2013). ANFIS-based prediction of the compressive strength of geopolymers with seeded fly ash and rice husk–bark ash. Neural Computing and Applications, 22, 689-701.
  • [21] Li, C., Mei, X., Dias, D., Cui, Z., & Zhou, J. (2023). Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 16(8), 3135.
  • [22] Al-Hashem, M. N., Amin, M. N., Raheel, M., Khan, K., Alkadhim, H. A., Imran, M., ... & Iqbal, M. (2022). Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models. Materials, 15(21), 7713.
  • [23] Amin, M. N., Iqtidar, A., Khan, K., Javed, M. F., Shalabi, F. I., & Qadir, M. G. (2021). Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals, 11(7), 779.
  • [24] Li, Q., & Song, Z. (2023). Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. Journal of Cleaner Production, 382, 135279.
  • [25] TS EN 196-3. Çimento deney metotları- Bölüm 3: Priz süresi ve hacim genleşme tayini. Türk Standartları, Ankara, 2010.
  • [26] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, An International Journal, 21(1), 21-30.
  • [27] Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının YSA Ve ANFIS İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • [28] Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Computing and Information Science, 2(3), 127-136.
  • [29] Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • [30] Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14.
  • [31] Sakthivel, P. B., Ravichandran, A., & Alagumurthi, N. (2016). Modeling and prediction of flexural strength of hybrid mesh and fiber reinforced cement-based composites using artificial neural network (ANN). GEOMATE Journal, 10(19), 1623-1635.

Estimation of the Effect of Rice Husk Ash on Portland Cement Setting Times with ANFIS

Yıl 2023, Cilt: 4 Sayı: 2, 34 - 42, 30.06.2023
https://doi.org/10.53608/estudambilisim.1298231

Öz

In this study, setting times of rice husk-replaced cement pastes were estimated with an adaptive network-based fuzzy inference system (ANFIS). In the first stage of the study, initial and final setting time of cement pastes in which 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% rice husk ash substituted into Portland cement were determined. In the second stage, two models were created using the gaussian and triangular membership functions with the results obtained from the experiments, and with the help of these models, the initial and final setting times were tried to be estimated. In the last stage, three different statistical methods, namely R2, MAPE and RMSE, were used to understand the reliability of the results obtained from the models. According to the initial setting time obtained, R2, MAPE and RMSE were found as 0.9912, 0.0167, and 5.6537 for gaussian membership functions, 0.9957, 0.0119, and 3.9661 for triangle membership functions, respectively. According to the final setting time, R2, MAPE and RMSE were detected as 0.9909, 0.0144, and 5.8693 for gaussian membership functions, 0.9939, 0.0127, and 4.8125 for triangle membership functions, respectively. When the statistical indices were evaluated as a whole, it was determined that results very close to real values were obtained with the models created with both gaussian and triangular membership functions in terms of initial and final setting times. Therefore, it can be stated that both models are powerful models for estimating setting times.

Proje Numarası

2019.07.05.939

Kaynakça

  • [1] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455.
  • [2] Vijayan, D. S., Devarajan, P., & Sivasuriyan, A. (2023). A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sustainable Energy Technologies and Assessments, 56, 103105.
  • [3] Kim, K. W., Park, K. T., Ates, F., Kim, H. G., & Woo, B. H. (2023). Effect of pretreated biomass fly ash on the mechanical properties and durability of cement mortar. Case Studies in Construction Materials, 18, e01754.
  • [4] Yuan, L., Qiu, J., Guo, Z., Zhang, S., Wan, X., & Sun, X. (2023). Microscale and macroscale strength behaviors of blast furnace slag-cement based materials: Modeling and analysis. Construction and Building Materials, 376, 131016.
  • [5] Koçak, Y. (2017). The effects of super plasticizer and trass on the cement hydration. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 23(3), 184-192, 2017.
  • [6] Vissa, S. V. K., Massion, C., Lu, Y., Bunger, A., & Radonjic, M. (2022). Zeolite-Enhanced Portland Cement: Solution for Durable Wellbore-Sealing Materials. Materials, 16(1), 30.
  • [7] Yi, W., Xiling, Z., Jinglin, Y., Wenxuan, W., & Tian, T. (2023). A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar. Science of The Total Environment, 858, 159705.
  • [8] Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528.
  • [9] Gonçalves, M. R. F., & Bergmann, C. P. (2007). Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Construction and Building Materials, 21(12), 2059-2065.
  • [10] Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306, 124762.
  • [11] Anto, G., Athira, K., Nair, N. A., Sai, T. Y., Yadav, A. L., & Sairam, V. (2022). Mechanical properties and durability of ternary blended cement paste containing rice husk ash and nano silica. Construction and Building Materials, 342, 127732.
  • [12] Kuffner, B. H. B., Tambara Júnior, L. U. D., Marangon, E., & Lübeck, A. (2023). Development of self-compacting concretes using rice husk or fly ashes and different cement types. REM-International Engineering Journal, 76, 9-19.
  • [13] Xia, Y., Liu, M., Zhao, Y., Guo, J., Chi, X., Du, J., ... & Shi, D. (2023). Hydration mechanism and environmental impacts of blended cements containing co-combustion ash of sewage sludge and rice husk: Compared with blended cements containing sewage sludge ash. Science of The Total Environment, 864, 161116.
  • [14] Nie, Y., Lu, J., Liu, Z., Meng, D., He, Z., & Shi, J. (2022). Mechanical, water resistance and environmental benefits of magnesium oxychloride cement incorporating rice husk ash. Science of The Total Environment, 849, 157871.
  • [15] Li, C., Jiang, D., Li, X., Lv, Y., & Wu, K. (2023). Autogenous shrinkage and hydration property of cement pastes containing rice husk ash. Case Studies in Construction Materials, 18, e01943.
  • [16] Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Contribution of rice husk ash to the properties of mortar and concrete: a review. Journal of American science, 6(3), 157-165.
  • [17] Hwang C. L., Chandra S., (1996). Waste Materials Used in Concrete Manufacturing. Noyes Publications, New Jersey, U.S.A.
  • [18] Hwang C. L., Wu D. S., (1989). Properties of Cement Paste Containing Rice Husk Ash. American Concrete Institute, 114: 733-762.
  • [19] TS EN 197-1. Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • [20] Nazari, A., Khalaj, G., & Riahi, S. (2013). ANFIS-based prediction of the compressive strength of geopolymers with seeded fly ash and rice husk–bark ash. Neural Computing and Applications, 22, 689-701.
  • [21] Li, C., Mei, X., Dias, D., Cui, Z., & Zhou, J. (2023). Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 16(8), 3135.
  • [22] Al-Hashem, M. N., Amin, M. N., Raheel, M., Khan, K., Alkadhim, H. A., Imran, M., ... & Iqbal, M. (2022). Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models. Materials, 15(21), 7713.
  • [23] Amin, M. N., Iqtidar, A., Khan, K., Javed, M. F., Shalabi, F. I., & Qadir, M. G. (2021). Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals, 11(7), 779.
  • [24] Li, Q., & Song, Z. (2023). Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. Journal of Cleaner Production, 382, 135279.
  • [25] TS EN 196-3. Çimento deney metotları- Bölüm 3: Priz süresi ve hacim genleşme tayini. Türk Standartları, Ankara, 2010.
  • [26] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, An International Journal, 21(1), 21-30.
  • [27] Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının YSA Ve ANFIS İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • [28] Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Computing and Information Science, 2(3), 127-136.
  • [29] Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • [30] Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14.
  • [31] Sakthivel, P. B., Ravichandran, A., & Alagumurthi, N. (2016). Modeling and prediction of flexural strength of hybrid mesh and fiber reinforced cement-based composites using artificial neural network (ANN). GEOMATE Journal, 10(19), 1623-1635.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri
Yazarlar

Eyyüp Gülbandılar 0000-0001-5559-5281

Burak Koçak 0000-0002-8640-1758

İzzet Özdemir 0000-0001-5387-4199

Yılmaz Koçak 0000-0002-5281-5450

Proje Numarası 2019.07.05.939
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 17 Mayıs 2023
Kabul Tarihi 8 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

IEEE E. Gülbandılar, B. Koçak, İ. Özdemir, ve Y. Koçak, “Portland Çimentosu Priz Sürelerine Pirinç Kabuğu Külü Etkisinin ANFIS ile Tahmini”, ESTUDAM Bilişim, c. 4, sy. 2, ss. 34–42, 2023, doi: 10.53608/estudambilisim.1298231.

Dergimiz Index Copernicus, ASOS Indeks, Google Scholar ve ROAD indeks tarafından indekslenmektedir.