Araştırma Makalesi
BibTex RIS Kaynak Göster

Hıyarda (Cucumis sativus L.) Tuzluluk Stresi Koşullarında Genomik Stabilite Üzerinde Aşılamanın Etkisi

Yıl 2023, Cilt: 6 Sayı: 1, 23 - 30, 31.03.2023
https://doi.org/10.55257/ethabd.1231233

Öz

Hıyar, yüksek miktarda yetiştiriciliği yapılan önemli bir sebze türüdür. Abiyotik stres faktörleri hıyarda önemli morfolojik, fizyolojik ve moleküler değişikliklere neden olabilmektedir. Güçlü anaçlar üzerine aşılama bu olumsuz etkiyi azaltabilir. Bu çalışma, hıyarda tuzluluk stresinin genotoksik potansiyelini değerlendirmek ve aşılamanın genotoksisite üzerine etkisini belirlemek amacıyla yapılmıştır. Aşısız ve aşılı bitkiler 100 mM NaCl ile muamele edilmiş ve 15 gün sonunda ISSR profilleri karşılaştırılmıştır. On dört ISSR primeri kullanılarak tüm gruplar arasında %51.9 polimorfizm tespit edilmiştir. Tuzluluk stresi GTS oranını % 47.2'ye düşürürken aşılama ile bu oranın artırılabileceği belirlenmiştir. GTS ve benzerlik indeksleri benzer sonuçlar vermiş ve ISSR tekniğinin genotoksisite belirlemede etkili olabileceği sonucuna varılmıştır. Anaçlar arasında da ölçümler arasında farklılıklar tespit edilmiştir. Bu çalışma ile tuzluluk stresinin hıyarda genomik stabilite değişikliğine neden olabileceği, bu parametrenin kullanılan anaç çeşidine bağlı olarak aşılama ile korunabileceği, ISSR tekniğinin genotoksisite belirlemede kullanılabileceği sonucuna varılmıştır. Bu çalışma, tuzluluk stresine hıyar tepkisinde aşılamanın altında yatan moleküler mekanizmaları araştırmak için bir temel sağlamaktadır.

Kaynakça

  • Abd El-Mageed, T. A. A., Mekdad, A. A. A., Rady, M. O. A., Abdelbaky, A. S., Saudy, H. S., and Shaaban, A., 2022. Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. Journal of Soil Science and Plant Nutrition 22: 3636-3654.
  • AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7:276.
  • Abdelmigid, H. M., 2010. Qualitative assessment of cadmium stress using genome template stability in Hordeum vulgare. Egyptian Journal of Genetics and Cytology 39: 291-303.
  • Adhikari, B., Dhungana, S. K., Kim, I. D., and Shin, D. H., 2020. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences 19(4): 261-269.
  • Alotaibi, S. S., 2021. Salinity stress alerts genome stability and genotoxicity of Ocimum basilicum cultivars. International Journal of Agriculture & Biology 25:1311-1320.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156: 64-77.
  • Aslam, A., Khan, S., Ibrar, D., Irshad, S., Bakhsh, A., Gardezi, S. T. R., Ali, M., Hasnain, Z., Al-Hashimi, A., Noor, M. A., Brestic, M., Skalicky, M., and Zuan, A. T. K., 2021. Defensive impact of foliar applied potassium nitrate on growth linked with improved physiological and antioxidative activities in sunflower (Helianthus annuus L.) hybrids grown under salinity stress. Agron 11: 2076.
  • Aslan, N., Coskun, O. F., Dalda-Sekerci, A., and Gulsen, O. 2021. Moleküler markörler kullanarak çerezlik kabaklarda (Cucurbita pepo L.) saflık düzeylerinin tahmin edilmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi 26(3): 759-769.
  • Atienzar, F. A., Conradi, M., Evenden, A. J., Jha, A. N., and Depledge, M. H., 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology and Chemistry 18: 2275-2282.
  • Cadet, J., Douki, T., and Ravanat, J. L., 2015. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Journal of Photochemistry and Photobiology B: Biology 91: 140-155.
  • Cenkci, S., Yildiz, M., Cigerci, I. H., Bozdag, A., Terzi, H., and Terzi, E. S., 2010. Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety 73(7): 1558-1564.
  • Coskun, O. F., Gulsen, O., Dalda-Sekerci, A., Yetisir, H., and Pinar, H., 2017. Bazı çerezlik kabak hatlarında SSR markır analizi. Akademik Ziraat Dergisi 6: 151-156.
  • Coskun, O. F., 2022. Determination of genetic diversity in some pumpkin genotypes using SSR marker technique . Erzincan University Journal of Science and Technology 15(3): 942-952.
  • Coskun, O.F., 2023. The effect of grafting on morphological, physiological and molecular changes induced by drought stress in cucumber. Sustainability 2023: 15, 875.
  • Genisel, M., Erdal, S., and Kizilkaya, M., 2015. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regulation 75:187-197.
  • Hanin, M., Ebel, C., Ngom, M., Laplaze, L., and Masmoudi, K., 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7: 1787.
  • Hossein Pour, A., Ozkan, G., Balpinar Nalci, O., and Haliloglu, K., 2019. Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turkish Journal of Botany 43: 27-37.
  • Hu, L., Zhou, K., Li, Y., Chen, X., Liu, B., Li, C., Gong, X., and Ma, F., 2018. Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis rehd. Plant Physiology and Biochemistry 133: 116-126.
  • Hussien, E.T., 2022. Salinity stress affecting viability and genetic stability of Lupinus albus L.. Vegetos 35: 674-680.
  • Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., and Chen, J-T., 2019. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences 21(1): 148.
  • Karaman, K., Dalda-Sekerci, A., Yetisir, H., Gulsen, O., and Coskun, O. F., 2018. Molecular, morphological and biochemical characterization of some turkish bitter melon (Momordica charantia L.) genotypes. Journal of Industrial Crops and Products 123: 93-99.
  • Kirac, H., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2022. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution 1-9.
  • Korpe, D. A., and Aras, S., 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutation Research 719(1-2): 29-34.
  • Kumar, A., Rodrigues, V., Verma, S., Singh, M., Hiremath, C., Shanker, K., Shukla, A. K., and Sundaresan, V., 2021. Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiologiae Plantarum 43: 68.
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Hoyos Echevarria, P., Morra, L., and Oda, M., 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127: 93-105.
  • Mehta, A., and Haber, J. E., 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology 6: a016428.
  • Meriga, B., Reddy, B. K., Rao, K. R., Reddy, L. A., and Kishor, P. K., 2004. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). Journal of Plant Physiology 161: 63-68.
  • Morilipınar, E. O., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2021. Genetic analysis of local pumpkin populations. International Journal of Agricultural and Natural Sciences 14(3): 264-272.
  • Nardemir, G., Agar, G., Arslan, E., and Erturk, F. A., 2015. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology 27: 131-139.
  • Nisha Nandhini, S., Anan Gideon, V., and Nithaniyal, S., 2021. Conceptual review on the conventional and genome-wide association analysis towards developing salinity tolerance in rice. Plant Gene 28: 100327
  • Niu, M., Xie, J., Sun, J., Huang, Y., Kong, Q., Nawaz, M. A., and Bie, Z., 2017. A shoot based Na+ tolerance mechanism observed in pumpkin-An important consideration for screening salt tolerant rootstocks. Scientia Horticulturae 218: 38-47 Pinar, H., Coskun, O. F., Uysal, E., Gulsen, O., and Yetisir, H., 2017. Yöresel cırgalan biberi genotiplerinin ISSR markırları ile karakterizasyonu. Akademik Ziraat Dergisi 6: 145-150. In Turkish Rohlf, J. F., 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System; Exeter Software: New York, NY, USA. Safdar, H., Amin, A., Shafiq, Y., Ali, A., and Yasin, R., 2019. Abbas Shoukat, Maqsood Ul Hussan, Muhammad Ishtiaq Sarwar. A review: impact of salinity on plant growth. Natural Sciences 17: 34-40.
  • Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., Aqeel, M., Rizwan, M., Aljarba, N. H., Alkahtani, S., and Abdel-Daim, M. M., 2020. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants 9: 496.
  • Saleh, B., 2016. DNA changes in cotton (Gossypium hirsutum L.) under salt stress as revealed by RAPD marker. Advances in Horticultural Science 30(1): 13-22.
  • Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 32: 243-247.
  • Sigmaz, B., Agar, G., Arslan, E., Aydin, M., and Taspinar, M. S., 2015. The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiologiae Plantarum 37: 251.
  • Silprasit, K., Ngamniyom, A., Kerksakul, P., and Thumajitsakul, S., 2016. Using morphology and genomic template stability (GTS) to track herbicide effect on some submersed aquatic plants. Applied Environmental Research 38(1): 75-85.
  • Sun, J., Cao, H., Cheng, J., He, X., Sohail, H., Niu, M., Huang, Y., and Bie, Z., 2018. Pumpkin CmHKT1;1 controls shoot Na+ accumulation via limiting Na+ transport from rootstock to scion in grafted cucumber. International Journal of Molecular Science 19: 2648.
  • Taspinar, M. S., Aydin, M., Arslan, E., Yaprak, M., and Agar, G., 2016. 5- Aminolevulinic acid improves DNA damage and DNA methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings. Plant Physiology and Biochemistry 118, 267-273.
  • Tecirli, T., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2018. Morphological and molecular diversity among Heliotropium greuteri samples. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34: 1-7.
  • Uzun, A., Cil, A., Yaman, M., and Coskun, O. F., 2020. Genetic diversity and some fruit characteristics of quince genotypes collected from Kayseri region. Turkish Journal of Agriculture - Food Science and Technology 8:318–323.
  • Yaman, M., 2021. Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Molecular Biology Reports 1:1–9.
  • Zamin, M., Khattak, A. M., Salim, A. M., Marcum, K. B., Shakur, M., Shah, S., Jan, I., and Fahad, S., 2019. Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environmental Science and Pollution Research 26(13): 13410-13421.

Effects of Grafting on Genomic Stability in Salinity Stress Conditions in Cucumber (Cucumis sativus L.)

Yıl 2023, Cilt: 6 Sayı: 1, 23 - 30, 31.03.2023
https://doi.org/10.55257/ethabd.1231233

Öz

Cucumber is an important type of vegetable that is grown in high quantities. Abiotic stress factors can cause significant morphological, physiological and molecular changes in cucumber. Grafting on strong rootstocks can reduce this negative effect. This study was carried out to evaluate the genotoxic potential of salinity stress in cucumber and to determine the effect of grafting on genotoxicity. Non-grafted and grafted plants were treated with 100 mM NaCl and the ISSR profiles were compared after 15 days. Using 14 ISSR primers, 51.9% polymorphism was detected between all groups. While salinity stress decreased the GTS rate to 47.2%, it was determined that this rate could be increased (%72.4-79.5) with grafting. GTS and similarity indices gave similar results and it was concluded that the ISSR technique could be effective in determining genotoxicity. There were also differences in measurements between rootstocks. With this study, it was concluded that salinity stress may cause genomic template stability changes in cucumber, this parameter can be protected by grafting depending on the rootstock variety used, and the ISSR technique can be used to determine genotoxicity. This study provides a basis for investigating the molecular mechanisms underlying grafting in the cucumber response to salinity stress.

Kaynakça

  • Abd El-Mageed, T. A. A., Mekdad, A. A. A., Rady, M. O. A., Abdelbaky, A. S., Saudy, H. S., and Shaaban, A., 2022. Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. Journal of Soil Science and Plant Nutrition 22: 3636-3654.
  • AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7:276.
  • Abdelmigid, H. M., 2010. Qualitative assessment of cadmium stress using genome template stability in Hordeum vulgare. Egyptian Journal of Genetics and Cytology 39: 291-303.
  • Adhikari, B., Dhungana, S. K., Kim, I. D., and Shin, D. H., 2020. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences 19(4): 261-269.
  • Alotaibi, S. S., 2021. Salinity stress alerts genome stability and genotoxicity of Ocimum basilicum cultivars. International Journal of Agriculture & Biology 25:1311-1320.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156: 64-77.
  • Aslam, A., Khan, S., Ibrar, D., Irshad, S., Bakhsh, A., Gardezi, S. T. R., Ali, M., Hasnain, Z., Al-Hashimi, A., Noor, M. A., Brestic, M., Skalicky, M., and Zuan, A. T. K., 2021. Defensive impact of foliar applied potassium nitrate on growth linked with improved physiological and antioxidative activities in sunflower (Helianthus annuus L.) hybrids grown under salinity stress. Agron 11: 2076.
  • Aslan, N., Coskun, O. F., Dalda-Sekerci, A., and Gulsen, O. 2021. Moleküler markörler kullanarak çerezlik kabaklarda (Cucurbita pepo L.) saflık düzeylerinin tahmin edilmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi 26(3): 759-769.
  • Atienzar, F. A., Conradi, M., Evenden, A. J., Jha, A. N., and Depledge, M. H., 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology and Chemistry 18: 2275-2282.
  • Cadet, J., Douki, T., and Ravanat, J. L., 2015. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Journal of Photochemistry and Photobiology B: Biology 91: 140-155.
  • Cenkci, S., Yildiz, M., Cigerci, I. H., Bozdag, A., Terzi, H., and Terzi, E. S., 2010. Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety 73(7): 1558-1564.
  • Coskun, O. F., Gulsen, O., Dalda-Sekerci, A., Yetisir, H., and Pinar, H., 2017. Bazı çerezlik kabak hatlarında SSR markır analizi. Akademik Ziraat Dergisi 6: 151-156.
  • Coskun, O. F., 2022. Determination of genetic diversity in some pumpkin genotypes using SSR marker technique . Erzincan University Journal of Science and Technology 15(3): 942-952.
  • Coskun, O.F., 2023. The effect of grafting on morphological, physiological and molecular changes induced by drought stress in cucumber. Sustainability 2023: 15, 875.
  • Genisel, M., Erdal, S., and Kizilkaya, M., 2015. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regulation 75:187-197.
  • Hanin, M., Ebel, C., Ngom, M., Laplaze, L., and Masmoudi, K., 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7: 1787.
  • Hossein Pour, A., Ozkan, G., Balpinar Nalci, O., and Haliloglu, K., 2019. Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turkish Journal of Botany 43: 27-37.
  • Hu, L., Zhou, K., Li, Y., Chen, X., Liu, B., Li, C., Gong, X., and Ma, F., 2018. Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis rehd. Plant Physiology and Biochemistry 133: 116-126.
  • Hussien, E.T., 2022. Salinity stress affecting viability and genetic stability of Lupinus albus L.. Vegetos 35: 674-680.
  • Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., and Chen, J-T., 2019. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences 21(1): 148.
  • Karaman, K., Dalda-Sekerci, A., Yetisir, H., Gulsen, O., and Coskun, O. F., 2018. Molecular, morphological and biochemical characterization of some turkish bitter melon (Momordica charantia L.) genotypes. Journal of Industrial Crops and Products 123: 93-99.
  • Kirac, H., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2022. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution 1-9.
  • Korpe, D. A., and Aras, S., 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutation Research 719(1-2): 29-34.
  • Kumar, A., Rodrigues, V., Verma, S., Singh, M., Hiremath, C., Shanker, K., Shukla, A. K., and Sundaresan, V., 2021. Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiologiae Plantarum 43: 68.
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Hoyos Echevarria, P., Morra, L., and Oda, M., 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127: 93-105.
  • Mehta, A., and Haber, J. E., 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology 6: a016428.
  • Meriga, B., Reddy, B. K., Rao, K. R., Reddy, L. A., and Kishor, P. K., 2004. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). Journal of Plant Physiology 161: 63-68.
  • Morilipınar, E. O., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2021. Genetic analysis of local pumpkin populations. International Journal of Agricultural and Natural Sciences 14(3): 264-272.
  • Nardemir, G., Agar, G., Arslan, E., and Erturk, F. A., 2015. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology 27: 131-139.
  • Nisha Nandhini, S., Anan Gideon, V., and Nithaniyal, S., 2021. Conceptual review on the conventional and genome-wide association analysis towards developing salinity tolerance in rice. Plant Gene 28: 100327
  • Niu, M., Xie, J., Sun, J., Huang, Y., Kong, Q., Nawaz, M. A., and Bie, Z., 2017. A shoot based Na+ tolerance mechanism observed in pumpkin-An important consideration for screening salt tolerant rootstocks. Scientia Horticulturae 218: 38-47 Pinar, H., Coskun, O. F., Uysal, E., Gulsen, O., and Yetisir, H., 2017. Yöresel cırgalan biberi genotiplerinin ISSR markırları ile karakterizasyonu. Akademik Ziraat Dergisi 6: 145-150. In Turkish Rohlf, J. F., 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System; Exeter Software: New York, NY, USA. Safdar, H., Amin, A., Shafiq, Y., Ali, A., and Yasin, R., 2019. Abbas Shoukat, Maqsood Ul Hussan, Muhammad Ishtiaq Sarwar. A review: impact of salinity on plant growth. Natural Sciences 17: 34-40.
  • Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., Aqeel, M., Rizwan, M., Aljarba, N. H., Alkahtani, S., and Abdel-Daim, M. M., 2020. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants 9: 496.
  • Saleh, B., 2016. DNA changes in cotton (Gossypium hirsutum L.) under salt stress as revealed by RAPD marker. Advances in Horticultural Science 30(1): 13-22.
  • Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 32: 243-247.
  • Sigmaz, B., Agar, G., Arslan, E., Aydin, M., and Taspinar, M. S., 2015. The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiologiae Plantarum 37: 251.
  • Silprasit, K., Ngamniyom, A., Kerksakul, P., and Thumajitsakul, S., 2016. Using morphology and genomic template stability (GTS) to track herbicide effect on some submersed aquatic plants. Applied Environmental Research 38(1): 75-85.
  • Sun, J., Cao, H., Cheng, J., He, X., Sohail, H., Niu, M., Huang, Y., and Bie, Z., 2018. Pumpkin CmHKT1;1 controls shoot Na+ accumulation via limiting Na+ transport from rootstock to scion in grafted cucumber. International Journal of Molecular Science 19: 2648.
  • Taspinar, M. S., Aydin, M., Arslan, E., Yaprak, M., and Agar, G., 2016. 5- Aminolevulinic acid improves DNA damage and DNA methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings. Plant Physiology and Biochemistry 118, 267-273.
  • Tecirli, T., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2018. Morphological and molecular diversity among Heliotropium greuteri samples. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34: 1-7.
  • Uzun, A., Cil, A., Yaman, M., and Coskun, O. F., 2020. Genetic diversity and some fruit characteristics of quince genotypes collected from Kayseri region. Turkish Journal of Agriculture - Food Science and Technology 8:318–323.
  • Yaman, M., 2021. Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Molecular Biology Reports 1:1–9.
  • Zamin, M., Khattak, A. M., Salim, A. M., Marcum, K. B., Shakur, M., Shah, S., Jan, I., and Fahad, S., 2019. Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environmental Science and Pollution Research 26(13): 13410-13421.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Ömer Faruk Coşkun 0000-0001-5398-5737

Erken Görünüm Tarihi 18 Ocak 2023
Yayımlanma Tarihi 31 Mart 2023
Kabul Tarihi 23 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Coşkun, Ö. F. (2023). Effects of Grafting on Genomic Stability in Salinity Stress Conditions in Cucumber (Cucumis sativus L.). Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 6(1), 23-30. https://doi.org/10.55257/ethabd.1231233