Araştırma Makalesi
BibTex RIS Kaynak Göster

Elmalarda Hasat Sonu Kahverengi Çürüklük Etmeni Monilinia laxa’ ya Karşı Organik ve İnorganik Tuzların Antifungal Etkilerinin Belirlenmesi

Yıl 2024, Cilt: 7 Sayı: 2, 1 - 11
https://doi.org/10.55257/ethabd.1504495

Öz

Elmada kahverengi çürüklük hastalığı (Monilinia laxa) hasat öncesi ve hasat sonrası dönemde ekonomik kayıplara neden olabilen fungal hastalıklardan biridir. Bu çalışmada, elmalarda M. laxa hastalık etmenine karşı 10 farklı organik ve inorganik tuzun (sodyum asetat, sodyum karbonat, sodyum bikarbonat, sodyum benzoat, sodyum metabisülfit, amonyum asetat, potasyum sorbat, potasyum karbonat, potasyum bikarbonat ve potasyum benzoat) in vitro denemeler ve koparılmış meyve denemeleri ile kimyasal mücadeleye alternatif olarak etkinlikleri araştırılmıştır. In vitro testlerde sodyum asetat ve amonyum asetat hariç tüm tuzlar %2’lik konsantrasyonda pozitif kontrolle (Captan 50 WP ve Thiram 80 WP) benzer etki göstererek M. laxa’nın miseliyal gelişimi tamamen engellenmiştir. Sodyum metabisülfit, fungusun misel gelişimini en düşük konsantrasyonda (%0,1) tamamen engellemiştir. Toksisite denemelerinde de sodyum metabisülfitin en düşük MIC (Minimum inhibisyon konsantrasyonu) ve MFC (en düşük fungisidal konsantrasyon) değerlerine sahip olduğu belirlenmiştir. M. laxa’ya karşı farklı dozlardaki tüm tuzların tedavi edici etkileri birlikte değerlendirildiğinde, sodyum metabisülfit %0,5, 1,0 ve 2,0’lik konsantrasyonlarda kontrole göre lezyon gelişimini tamamen engelleyen en başarılı tuz olarak saptanmıştır. Sodyum benzoat ise %1,0 ve %2,0’lik konsantrasyonlarda lezyon gelişimini neredeyse tamamen engelleyen başarılı ikinci tuz olarak belirlenmiştir. M. laxa’ya karşı tuzların koruyucu etkileri değerlendirildiğinde, sodyum metabisülfitin %1,0 ve %2,0’lik konsantrasyonlarının kontrol ve diğer tuzlara göre elma meyvesi üzerinde lezyon gelişimini tamamen engelleyen en etkili tuz olduğu saptanmıştır. Aynı tuzun %0,5’lik konsantrasyonlarının da meyve enfeksiyonunu oldukça başarılı bir şekilde engellediği değerlendirilmiştir Sodyum benzoat ve potasyum benzoat %2’lik konsantrasyonları da miseliyal gelişimi engellemede başarılı bulunmuştur. Bu çalışmada, elmada M. laxa hastalık etmeninin depo koşullarında kontrolünde, organik ve inorganik tuzların kullanımına yönelik umut verici sonuçlar elde edilmiştir.

Destekleyen Kurum

Erciyes Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

FYL-2020-10201

Teşekkür

Bu araştırma Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından FYL-2020-10201 no’lu proje kapsamında desteklenmiştir. M. laxa izolatının (T-B1-A6) temini için Çanakkale Onsekiz Mart Üniversitesi öğretim üyesi Doç. Dr. Hilal ÖZKILINÇ’a teşekkür ederiz.

Kaynakça

  • Avenot, H. F., & Michailides, T. J., 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 29(7): 643-651.
  • Byrde, R. J. W., & Willetts, H. J., 1977. The Brown Rot Fungi of Fruit. Their Biology and Control. Oxford, UK: Pergamon Press, 171 pp.
  • EPPO, 2020. Monilinia fructicola/EPPO Global Database https://gd.eppo.int/taxon/MONIFC
  • Erper, İ., Türkkan, M., Konak, S., & Kılıç, G., 2013. Potasyum bikarbonatın Penicillium expansum’a karşı antifungal etkisinin belirlenmesi. Türkiye V. Organik Tarım Sempozyumu, 341-342s.
  • FAO, 2023. FAOSTAT (Food And Agriculture Organization of the United Nations). https://www.fao.org/faostat/en/#home Dünya’ da ve Türkiye’de elma üretim miktarı (ton). Erişim Tarihi: 15.09.2023.
  • Jenkins, P., T., & Reinganum, C., 1965. The occurrence of a quiescent infection of stone fruit caused by Sclerotinia fructicola (Wint.) Rehm. Australian Journal of Agricultural Research 16(2): 131-140.
  • Larena, I., Torres, R., De Cal A., Liñán, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., Ochoa De Eribe, X., & Usall, J., 2005. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control 32(2): 305-310.
  • Latifa, A., Idriss, T., Hassan, B., Amine, S. M., El Hassane, B., & Abdellah, A. B. A., 2011. Effects of organic acids and salts on the development of Penicillium italicum: the causal agent of citrus blue mold. Plant Pathology Journal 10(3): 99-107.
  • Mecteau, M. R., Arul, J., & Tweddell, R. J., 2002. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research 106(6): 688-696.
  • Obi, V. I., Barriuso, J. J., & Gogorcena, Y., 2018. Effects of pH and titratable acidity on the growth and development of Monilinia laxa (Aderh. & Ruhl.) in vitro and in vivo. European Journal of Plant Pathology 151(3): 781-790.
  • Olivier, C., MacNeil, C. R, & Loria, R., 1999. Application of organic and inorganic salts to field grown potato tubers can suppress silver scurf during potato storage. Plant Disease,83(9): 814-818.
  • Özkılınç, H., Yildiz, G., Silan, E., Arslan, K., Guven, H., Altinok, H. H., & Durak, M. R., 2020. Species diversity, mating type assays and aggressiveness patterns of Monilinia pathogens causing brown rot of peach fruit in Turkey. European Journal of Plant Pathology 157(4): 799-814.
  • Punja, Z., & Grogan, R. G., 1982. Effects of inorganic salts carbonate-bicarbonate anions, ammonia and the modifying influence of ph on sclerotia germination of Sclerotium rolfsii. Phytopathology 72(6): 635-639.
  • Stammler, G., Brix, H., D., Glättli, A., Semar, M., & Schoefl, U., 2007. Biological properties of the carboxamide boscalid including recent studies on its mode of action. XVI Intional Plant Protection Congress, Glascow.
  • Talibi, I., Askarne, L., Boubaker, H., Boudyach, H., Aoumar, A. A. B., & Oumar, B., 2015. Effect of organic and inorganic salts as alternative strategy for the control of postharvest citrus sour rot agent Geotrichum candidum. Acta Horticulturae 1065: 1577-1583.
  • Thompson, D. P., 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81(1): 151-153.
  • Türkkan, M., 2013. Antifungal effect of various salts againts Fusarium oxysporum f. sp. cepae the causal agent of Fusarium basal root of onion. Tarım Bilimleri Dergisi (Journal of Agricultural Science) 19(3): 178-187.
  • Türkkan, M., & Erper, İ., 2014. Evaluation of antifungal activity of sodium salts againts onion basal rot caused by Fusarium oxysporum f.sp. cepae. Plant Protection Science 50(1): 19-25.
  • Türkkan, M., 2015. Evaluation of inhibitory effect of organic and inorganic salts againts Ilyonectria liriodendri, the causal agent of root rot disease of kiwifruit. Journal Phytopathology 163(7-8): 567-577.
  • Türkkan, M., & Erper, İ., 2015. Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen 67(2): 83-94.
  • Türkkan, M., Ünsal, İ., & Kaş, S., 2018. Soğanlarda dip çürüklüğüne neden olan Fusarium oxysporum f. sp. cepae’nın büyüme ve gelişmesi üzerine bazı kalsiyum tuzlarının etkisi. Akademik Ziraat Dergisi 8(1): 35-42.
  • Van Leeuwen, G. C. M., Baayen, R. P., Holb, I. J., & Jeger, M. J., 2002. Distinction of the asiatic brown rot fungus Monilia polystroma sp. nov. from M. fructigena. Mycological Research 106(4): 444-451.
  • Yaman, M., & Türkkan, M., 2017. Kivilerde kök çürüklüğü hastalığına neden olan bazı funguslara karşı organik ve inorganik tuzların engelleyici etkilerinin belirlenmesi. Anadolu Tarım Bilimleri Dergisi 32(3): 291-302.
  • Zehr, E.I., 1982. Control of brown rot in peach orchards. Plant Disease 66: 1101-1105.
  • Zhu, X., & Guo., L., 2010. First report of brown rot on plum caused by Monilia polystroma in China. Plant Disease 94(4): 478-478.
  • Ziv, O., & Zitter, T. A., 1992. Effects of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Disease 76(5): 513-517.

Determination of the Antifungal Effects of Organic and Inorganic Salts Against the Post-Harvest Brown Rot Pathogen Monilinia laxa in Apples

Yıl 2024, Cilt: 7 Sayı: 2, 1 - 11
https://doi.org/10.55257/ethabd.1504495

Öz

The brown rot disease in apples (Monilinia laxa) is a fungal disease that can cause economic losses both before and after harvest. In this study, the effectiveness of 10 different organic and inorganic salts (sodium acetate, sodium carbonate, sodium bicarbonate, sodium benzoate, sodium metabisulfite, ammonium acetate, potassium sorbate, potassium carbonate, potassium bicarbonate, and potassium benzoate) was investigated as an alternative to chemical control against the M. laxa pathogen in apples through in vitro experiments and detached fruit trials. In the in vitro tests, all salts except for sodium acetate and ammonium acetate showed a similar effect to the positive control (Captan 50 WP and Thiram 80 WP) at a 2% concentration, completely inhibiting the mycelial growth of M. laxa. Sodium metabisulfite completely inhibited the fungal mycelial development at the lowest concentration (0.1%). In toxicity tests, it was determined that sodium metabisulfite had the lowest MIC (Minimum Inhibitory Concentration) and MFC (Minimum Fungicidal Concentration) values. When the curative activity of all salts at different doses against M. laxa were evaluated together, sodium metabisulfite was identified as the most successful salt, completely inhibiting lesion development at concentrations of 0.5%, 1.0%, and 2.0% compared to the control. Sodium benzoate was identified as the second most successful salt, almost completely inhibiting lesion development at concentrations of 1.0% and 2.0%. When evaluating the preventive activity of salts against M. laxa, sodium metabisulfite at concentrations of 1.0% and 2.0% was found to be the most effective salt, completely inhibiting lesion development on apple fruit compared to the control and other salts. It was also determined that the 0.5% concentration of the same salt, sodium metabisulfite, successfully prevented fruit infection to a significant extent. Sodium benzoate and potassium benzoate at 2% concentrations were also found to be successful in inhibiting mycelial development. This study yielded promising results for the use of organic and inorganic salts in controlling the M. laxa pathogen in apples under storage conditions.

Proje Numarası

FYL-2020-10201

Kaynakça

  • Avenot, H. F., & Michailides, T. J., 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 29(7): 643-651.
  • Byrde, R. J. W., & Willetts, H. J., 1977. The Brown Rot Fungi of Fruit. Their Biology and Control. Oxford, UK: Pergamon Press, 171 pp.
  • EPPO, 2020. Monilinia fructicola/EPPO Global Database https://gd.eppo.int/taxon/MONIFC
  • Erper, İ., Türkkan, M., Konak, S., & Kılıç, G., 2013. Potasyum bikarbonatın Penicillium expansum’a karşı antifungal etkisinin belirlenmesi. Türkiye V. Organik Tarım Sempozyumu, 341-342s.
  • FAO, 2023. FAOSTAT (Food And Agriculture Organization of the United Nations). https://www.fao.org/faostat/en/#home Dünya’ da ve Türkiye’de elma üretim miktarı (ton). Erişim Tarihi: 15.09.2023.
  • Jenkins, P., T., & Reinganum, C., 1965. The occurrence of a quiescent infection of stone fruit caused by Sclerotinia fructicola (Wint.) Rehm. Australian Journal of Agricultural Research 16(2): 131-140.
  • Larena, I., Torres, R., De Cal A., Liñán, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., Ochoa De Eribe, X., & Usall, J., 2005. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control 32(2): 305-310.
  • Latifa, A., Idriss, T., Hassan, B., Amine, S. M., El Hassane, B., & Abdellah, A. B. A., 2011. Effects of organic acids and salts on the development of Penicillium italicum: the causal agent of citrus blue mold. Plant Pathology Journal 10(3): 99-107.
  • Mecteau, M. R., Arul, J., & Tweddell, R. J., 2002. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research 106(6): 688-696.
  • Obi, V. I., Barriuso, J. J., & Gogorcena, Y., 2018. Effects of pH and titratable acidity on the growth and development of Monilinia laxa (Aderh. & Ruhl.) in vitro and in vivo. European Journal of Plant Pathology 151(3): 781-790.
  • Olivier, C., MacNeil, C. R, & Loria, R., 1999. Application of organic and inorganic salts to field grown potato tubers can suppress silver scurf during potato storage. Plant Disease,83(9): 814-818.
  • Özkılınç, H., Yildiz, G., Silan, E., Arslan, K., Guven, H., Altinok, H. H., & Durak, M. R., 2020. Species diversity, mating type assays and aggressiveness patterns of Monilinia pathogens causing brown rot of peach fruit in Turkey. European Journal of Plant Pathology 157(4): 799-814.
  • Punja, Z., & Grogan, R. G., 1982. Effects of inorganic salts carbonate-bicarbonate anions, ammonia and the modifying influence of ph on sclerotia germination of Sclerotium rolfsii. Phytopathology 72(6): 635-639.
  • Stammler, G., Brix, H., D., Glättli, A., Semar, M., & Schoefl, U., 2007. Biological properties of the carboxamide boscalid including recent studies on its mode of action. XVI Intional Plant Protection Congress, Glascow.
  • Talibi, I., Askarne, L., Boubaker, H., Boudyach, H., Aoumar, A. A. B., & Oumar, B., 2015. Effect of organic and inorganic salts as alternative strategy for the control of postharvest citrus sour rot agent Geotrichum candidum. Acta Horticulturae 1065: 1577-1583.
  • Thompson, D. P., 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81(1): 151-153.
  • Türkkan, M., 2013. Antifungal effect of various salts againts Fusarium oxysporum f. sp. cepae the causal agent of Fusarium basal root of onion. Tarım Bilimleri Dergisi (Journal of Agricultural Science) 19(3): 178-187.
  • Türkkan, M., & Erper, İ., 2014. Evaluation of antifungal activity of sodium salts againts onion basal rot caused by Fusarium oxysporum f.sp. cepae. Plant Protection Science 50(1): 19-25.
  • Türkkan, M., 2015. Evaluation of inhibitory effect of organic and inorganic salts againts Ilyonectria liriodendri, the causal agent of root rot disease of kiwifruit. Journal Phytopathology 163(7-8): 567-577.
  • Türkkan, M., & Erper, İ., 2015. Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen 67(2): 83-94.
  • Türkkan, M., Ünsal, İ., & Kaş, S., 2018. Soğanlarda dip çürüklüğüne neden olan Fusarium oxysporum f. sp. cepae’nın büyüme ve gelişmesi üzerine bazı kalsiyum tuzlarının etkisi. Akademik Ziraat Dergisi 8(1): 35-42.
  • Van Leeuwen, G. C. M., Baayen, R. P., Holb, I. J., & Jeger, M. J., 2002. Distinction of the asiatic brown rot fungus Monilia polystroma sp. nov. from M. fructigena. Mycological Research 106(4): 444-451.
  • Yaman, M., & Türkkan, M., 2017. Kivilerde kök çürüklüğü hastalığına neden olan bazı funguslara karşı organik ve inorganik tuzların engelleyici etkilerinin belirlenmesi. Anadolu Tarım Bilimleri Dergisi 32(3): 291-302.
  • Zehr, E.I., 1982. Control of brown rot in peach orchards. Plant Disease 66: 1101-1105.
  • Zhu, X., & Guo., L., 2010. First report of brown rot on plum caused by Monilia polystroma in China. Plant Disease 94(4): 478-478.
  • Ziv, O., & Zitter, T. A., 1992. Effects of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Disease 76(5): 513-517.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Resul Altındağ 0000-0002-6408-6638

Hacer Handan Altınok 0000-0002-4267-1107

Mahmut Alper Altınok 0000-0002-6770-442X

Proje Numarası FYL-2020-10201
Erken Görünüm Tarihi 11 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 25 Haziran 2024
Kabul Tarihi 5 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Altındağ, R., Altınok, H. H., & Altınok, M. A. (2024). Elmalarda Hasat Sonu Kahverengi Çürüklük Etmeni Monilinia laxa’ ya Karşı Organik ve İnorganik Tuzların Antifungal Etkilerinin Belirlenmesi. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 7(2), 1-11. https://doi.org/10.55257/ethabd.1504495