Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMINATION OF TRANSFORMATION EFFICIENCY OF DIFFERENT CUCUMBER (CUCUMIS SATIVUS L.) GENOTYPES

Yıl 2025, Cilt: 8 Sayı: 2, 24 - 32
https://doi.org/10.55257/ethabd.1635420

Öz

Classical breeding methods are the conventional approach taken in the development of high-yielding, disease- and pest-resistant plants. However, crossbreeding incompatibilities, the risk of transferring undesirable traits to the plant, and the lengthy process involved in breeding are all factors that limit the achievement of the desired plant. Consequently, biotechnological methods, otherwise referred to as modern breeding methods, have been employed to circumvent the limitations of traditional methods. These methods have the capacity to eliminate the aforementioned negatives, thereby reducing the financial and temporal demands of the breeding process. Furthermore, they facilitate the overcoming of challenges associated with crossbreeding, genetic linkage problems, and limitations in utilising the gene pool. Another biotechnological method used in plant breeding is gene transfer. However, in many species including cucumber, transformation efficiency varies depending on genotype and genotype effect limits the success. Although there are scientific studies on cucumber transformation, there are no protocols optimized for all genotypes yet. In this study, it was aimed to determine the transformation efficiency of different cucumber genotypes. In this study, transformation efficiency of 8 cucumber genotypes(4 Beith Alpha and 4 Pickled genotypes), were determined by using different kanamycin doses(50,75,100 mg/L) and different explant sources(cotyledon, hypocotyl, hypocotyl tip+petiole) as material. The findings of this study indicate that the transformation efficiency was enhanced in both cucumber types when E3(hypocotyl tip+petiole) was utilised as the explant source. Furthermore, the transformation efficiency of Beith Alpha type cucumber genotypes was observed to be superior to that of Pickled type cucumber genotypes. The genotype demonstrating the highest transformation efficiency was C-337 (21%) in Beith Alpha type and GK1F1 (12%) in Pickled cucumber type. The findings of the study can provide a foundation for gene transfer studies, particularly in next-generation biotechnology applications such as CRISPR. Furthermore, the identification of cucumber genotypes, as outlined in the study, with high transformation efficiency, may be advantageous in future gene transfer studies, potentially enhancing transformation success.

Proje Numarası

FYL-2024-14181

Kaynakça

  • Arslan, N., 1985. Patates Tohumluğunda ve Çeşitlerin Muhafazasında Doku Kültürlerinden Yararlanma İmkanları. Türkiye Sertifikalı ve Kontrollü Tohumluk Üretim ve Dağıtım Sorunları Simpozyumu, 563-573.
  • Biliarsji, G.S., Yertaeva, B. and Mitra, A. (2020) Expression of Fusion Lytic Peptides Promotes Fungal Disease Resistance in Transgenic Plants. American Journal of Plant Sciences, 11, 148-161.
  • Chai, L.; Fan, H.F.; Liu, C.; Du, C.X. Progress of transgenic cucumber mediated by Agrobacterium tumefaciens. Trends Hortic. 2020, 3, 93–101.
  • Chu, Y. F., Sun, J. I. E., Wu, X., & Liu, R. H. 2002. Antioxidant and antiproliferative activities of common vegetables. Journal of agricultural and food chemistry, 50(23), 6910-6916.
  • Doyle, J. J. and J. L. Doyle. 1990. A rapid total DNA preparation procedure for freshplant tissue. Focus 12:13-15
  • Fan A L, Sun Y, Xu L F, Liang D, Zou Z R. 2006. Optimum study of in vitro culture and plantlet regeneration system from cotyledonary nodes of cucumber (Cucumis sativus L.). Journal of Northwest A&F University (Natural Science), 34, 69–73. (in Chinese)
  • Gelvin, S.B. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 2017, 51, 195–217. Gönülşen, N., 1991. Germplazm Muhafazasında Kullanılan In Vitro Teknikleri. Anadolu Dergisi. Ege Tarımsal Araştırma Enstitüsü Yay. s: 49-68.
  • Grozeva S. and, N. Velkov (2014): In vitro plant regeneration of two cucumber (Cucumis sativum L.) genotypes: effects of explant types and culture medium-. Genetika vol 46, No2, 485-493.
  • Joyia, F. A., & Khan, M. S. 2013. In vitro micropropagation studies of elite Pakistani ricevarieties. Int J Agri Biol, 15, 27-33.
  • Kim S G, Chang J R, Cha H C, Lee K W. 1988. Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.). Plant Cell, Tissue and Organ Culture. 12, 67–74.
  • King SR, Davis AR, Wehner TC (2012) Classical genetics and traditional breeding. In: Wang Y, Behera TK, Kole C (eds) Genetics, Genomics and Breeding of Cucurbits. CRC Press, pp 61-92
  • Kose E, Koç N K. 2003. Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotechnology & Biotechnological Equipment, 17, 51–62
  • Liu, H.; Weng, Y. Agrobacterium Tumefaciens-Mediated Genetic Transformation in Cucumber. In The Cucumber Genome; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 55–69.
  • Liu, H.; Zhao, J.; Chen, F.;Wu, Z.; Tan, J.; Nguyen, N.H.; Cheng,Z.; Weng, Y. Improving Agrobacteriumtumefaciens−Mediated GeneticTransformation for Gene FunctionStudies and Mutagenesis inCucumber (Cucumis sativus L.). Genes2023, 14, 601.
  • Lou H, Kako S. 1994. Somatic embryogenesis and plant WANG Shun-li et al. Journal of Integrative Agriculture 2015, 14(3): 469–482 481regeneration in cucumber. HortScience, 29, 906–909.
  • Milner, J. A. 2000. Functional foods: the US perspective. The American journal of clinical nutrition, 71(6), 1654S-1659S.
  • Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Nanasato, Y.; Tabei, Y. A method of transformation and current progress in transgenic research on cucumbers and Cucurbita species. Plant Biotechnol. (Tokyo Jpn.) 2020, 37, 141–146.
  • Plader W, Burza W, Malepszy S (2007) Cucumber. In: Pua E-C, Davey MR (eds) Transgenic Crops IV. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 181-199.
  • Punja Z K, Abbas N, Sarmento G G, Tang F A. 1990. Regeneration of Cucumis sativus var. sativus and C. sativus var. hardwickii, C. melo, and C. metuliferus from explants through somatic embryogenesis and organogenesis. Plant Cell, Tissue and Organ Culture, 21, 93–102.
  • Smith, H.O.; Danner, D.B.; Deich, R.A. Genetic Transformation. Annu. Rev. Biochem. 1981, 50, 41–68.
  • Tan, J.; Lin, L.; Luo, H.; Zhou, S.; Zhu, Y.; Wang, X.; Miao, L.; Wang, H.; Zhang, P. Recent progress in the regeneration and genetic transformation system of cucumber. Appl. Sci. 2022, 12, 7180.
  • Trulson A J, Simpson R B, Shahin E A. 1986. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theoretical and Applied Genetics, 73, 11–15.
  • Wang, S.-L.; Ku, S.S.; Ye, X.-G.; He, C.-F.; Kwon, S.Y.; Choi, P.S. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). J. Integr. Agric. 2015, 14, 469–482.
  • Zhang R W, Gu X F, Wang Y, Zhang S P, Zhang B X. 2009. Effects of genotypes and 6-BA on regeneration frequency of cotyledon nodes in cucumber (Cucumis sativus L.). China Vegetables, 22, 45–48. (in Chinese)
  • Zhang W Z, Wei A M, Du S L, Han Y K, Zhang G H, Liu N. 2009. Transformation technoglogy through A. tumefaciens mediation and pollen tube pathway in cucumber. Acta Agriculturae Boreali-Occidentalis Sinica, 18, 217–220. (in Chinese)
  • Zhao J, Wang H, Pan J S, Cai R, Wu A Z. 2004. In vitro culture and plantlet regeneration from cotyledonary nodes of cucumber (Cucumis sativus L.). Journal of Shanghaijiaotong University (Agricultural Science), 22, 43–53. (in Chinese)

FARKLI HIYAR (Cucumis sativus L.) GENOTİPLERİNİN TRANSFORMASYON ETKİNLİKLERİNİN BELİRLENMESİ

Yıl 2025, Cilt: 8 Sayı: 2, 24 - 32
https://doi.org/10.55257/ethabd.1635420

Öz

Verimli, hastalık ve zararlılara dayanıklı bitkilerin geliştirilmesinde genellikle klasik ıslah yöntemlerinden yararlanılmaktadır. Fakat genotipler arasındaki melezleme uyuşmazlıkları, istenmeyen özelliklerin de bitkiye aktarılma riski ve ıslahın uzun zaman alması gibi nedenler, istenilen bitkinin elde edilmesinde sınırlayıcı faktörlerdir. Bu nedenle modern ıslah metotları olarak da adlandırılabilecek bitki genetik mühendisliği uygulamalarınında içinde yer aldığı biyoteknolojik metotlar sayesinde, geleneksel metotların olumsuzlukları ortadan kaldırılabilmekte, ıslah süresi kısaltılarak masraf ve zamandan tasarruf edilmekte, melezlemede karşılaşılan sorunlar ve gen havuzundan yararlanmadaki sınırlamaların kolayca üstesinden gelinebilmektedir. Bitki ıslahında kullanılan biyoteknolojik yöntemlerden birisi de gen transferidir. Ancak hıyarın da içerisinde yer aldığı bir çok türde genetik transformasyon etkinliği genotipe bağlı olarak değişmekte ve genotip etkisi başarıyı sınırlandırmaktadır. Hıyarda gen transformasyonu ile ilgili bilimsel çalışmalar olmakla birlikte henüz tüm genotipler için optimize edilmiş protokol bulunmamaktadır. Bu çalışmada farklı hıyar genotiplerinin Agrobacterium−Aracılı genetik transformation etkinliklerinin belirlenmesi amaçlanmıştır. Çalışmada farklı kanamisin dozları(50,75,100 mg/L) ve farklı eksplant kaynakları(kotiledon, hipokotil, hipokotil ucu+yaprak sapı) kullanılarak 4 adet Beith Alpha ve 4 adet Kornişon olmak üzere toplam 8 adet hıyar genotipinin transformasyon etkinliği belirlenmiştir. Bu çalışma ile elde edilen bulgulara göre eksplant kaynağı olarak E3(hipokotil ucu+yaprak sapı) kullanıldığında transformasyon etkinliğinin her iki hıyar tipinde de yüksek olduğu, Beith Alpha tipi hıyar genotiplerinin kornişon tipi hıyar genotiplerine göre transformasyon etkinliklerinin yüksek olduğu, Beith Alpha tipinde en yüksek transformasyon etkinliğine sahip genotipin C-337(%21) ve kornişon hıyar tipinde ise GK1F1(%12) olduğu belirlenmiştir. Çalışmadan elde edilen bulgular özellikle CRISPR gibi yeni nesil biyoteknoloji uygulamalarının da içinde yer aldığı gen transferi çalışmalarına ışık tutabilecek niteliktedir. Ayrıca çalışmada transformasyon etkinliği belirlenen hıyar genotiplerinin gelecekte yapılacak gen transferi çalışmalarında tercih edilmesi transformasyon başarısını arttırabilecektir.

Destekleyen Kurum

Erciyes Üniversitesi BAP Birimi

Proje Numarası

FYL-2024-14181

Kaynakça

  • Arslan, N., 1985. Patates Tohumluğunda ve Çeşitlerin Muhafazasında Doku Kültürlerinden Yararlanma İmkanları. Türkiye Sertifikalı ve Kontrollü Tohumluk Üretim ve Dağıtım Sorunları Simpozyumu, 563-573.
  • Biliarsji, G.S., Yertaeva, B. and Mitra, A. (2020) Expression of Fusion Lytic Peptides Promotes Fungal Disease Resistance in Transgenic Plants. American Journal of Plant Sciences, 11, 148-161.
  • Chai, L.; Fan, H.F.; Liu, C.; Du, C.X. Progress of transgenic cucumber mediated by Agrobacterium tumefaciens. Trends Hortic. 2020, 3, 93–101.
  • Chu, Y. F., Sun, J. I. E., Wu, X., & Liu, R. H. 2002. Antioxidant and antiproliferative activities of common vegetables. Journal of agricultural and food chemistry, 50(23), 6910-6916.
  • Doyle, J. J. and J. L. Doyle. 1990. A rapid total DNA preparation procedure for freshplant tissue. Focus 12:13-15
  • Fan A L, Sun Y, Xu L F, Liang D, Zou Z R. 2006. Optimum study of in vitro culture and plantlet regeneration system from cotyledonary nodes of cucumber (Cucumis sativus L.). Journal of Northwest A&F University (Natural Science), 34, 69–73. (in Chinese)
  • Gelvin, S.B. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 2017, 51, 195–217. Gönülşen, N., 1991. Germplazm Muhafazasında Kullanılan In Vitro Teknikleri. Anadolu Dergisi. Ege Tarımsal Araştırma Enstitüsü Yay. s: 49-68.
  • Grozeva S. and, N. Velkov (2014): In vitro plant regeneration of two cucumber (Cucumis sativum L.) genotypes: effects of explant types and culture medium-. Genetika vol 46, No2, 485-493.
  • Joyia, F. A., & Khan, M. S. 2013. In vitro micropropagation studies of elite Pakistani ricevarieties. Int J Agri Biol, 15, 27-33.
  • Kim S G, Chang J R, Cha H C, Lee K W. 1988. Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.). Plant Cell, Tissue and Organ Culture. 12, 67–74.
  • King SR, Davis AR, Wehner TC (2012) Classical genetics and traditional breeding. In: Wang Y, Behera TK, Kole C (eds) Genetics, Genomics and Breeding of Cucurbits. CRC Press, pp 61-92
  • Kose E, Koç N K. 2003. Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotechnology & Biotechnological Equipment, 17, 51–62
  • Liu, H.; Weng, Y. Agrobacterium Tumefaciens-Mediated Genetic Transformation in Cucumber. In The Cucumber Genome; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 55–69.
  • Liu, H.; Zhao, J.; Chen, F.;Wu, Z.; Tan, J.; Nguyen, N.H.; Cheng,Z.; Weng, Y. Improving Agrobacteriumtumefaciens−Mediated GeneticTransformation for Gene FunctionStudies and Mutagenesis inCucumber (Cucumis sativus L.). Genes2023, 14, 601.
  • Lou H, Kako S. 1994. Somatic embryogenesis and plant WANG Shun-li et al. Journal of Integrative Agriculture 2015, 14(3): 469–482 481regeneration in cucumber. HortScience, 29, 906–909.
  • Milner, J. A. 2000. Functional foods: the US perspective. The American journal of clinical nutrition, 71(6), 1654S-1659S.
  • Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Nanasato, Y.; Tabei, Y. A method of transformation and current progress in transgenic research on cucumbers and Cucurbita species. Plant Biotechnol. (Tokyo Jpn.) 2020, 37, 141–146.
  • Plader W, Burza W, Malepszy S (2007) Cucumber. In: Pua E-C, Davey MR (eds) Transgenic Crops IV. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 181-199.
  • Punja Z K, Abbas N, Sarmento G G, Tang F A. 1990. Regeneration of Cucumis sativus var. sativus and C. sativus var. hardwickii, C. melo, and C. metuliferus from explants through somatic embryogenesis and organogenesis. Plant Cell, Tissue and Organ Culture, 21, 93–102.
  • Smith, H.O.; Danner, D.B.; Deich, R.A. Genetic Transformation. Annu. Rev. Biochem. 1981, 50, 41–68.
  • Tan, J.; Lin, L.; Luo, H.; Zhou, S.; Zhu, Y.; Wang, X.; Miao, L.; Wang, H.; Zhang, P. Recent progress in the regeneration and genetic transformation system of cucumber. Appl. Sci. 2022, 12, 7180.
  • Trulson A J, Simpson R B, Shahin E A. 1986. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theoretical and Applied Genetics, 73, 11–15.
  • Wang, S.-L.; Ku, S.S.; Ye, X.-G.; He, C.-F.; Kwon, S.Y.; Choi, P.S. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). J. Integr. Agric. 2015, 14, 469–482.
  • Zhang R W, Gu X F, Wang Y, Zhang S P, Zhang B X. 2009. Effects of genotypes and 6-BA on regeneration frequency of cotyledon nodes in cucumber (Cucumis sativus L.). China Vegetables, 22, 45–48. (in Chinese)
  • Zhang W Z, Wei A M, Du S L, Han Y K, Zhang G H, Liu N. 2009. Transformation technoglogy through A. tumefaciens mediation and pollen tube pathway in cucumber. Acta Agriculturae Boreali-Occidentalis Sinica, 18, 217–220. (in Chinese)
  • Zhao J, Wang H, Pan J S, Cai R, Wu A Z. 2004. In vitro culture and plantlet regeneration from cotyledonary nodes of cucumber (Cucumis sativus L.). Journal of Shanghaijiaotong University (Agricultural Science), 22, 43–53. (in Chinese)
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hasan Pinar 0000-0002-0811-8228

Yasemin Aslantaş 0000-0002-0557-0913

Proje Numarası FYL-2024-14181
Erken Görünüm Tarihi 17 Eylül 2025
Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 12 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Pinar, H., & Aslantaş, Y. (2025). FARKLI HIYAR (Cucumis sativus L.) GENOTİPLERİNİN TRANSFORMASYON ETKİNLİKLERİNİN BELİRLENMESİ. Erciyes Tarım ve Hayvan Bilimleri Dergisi, 8(2), 24-32. https://doi.org/10.55257/ethabd.1635420