Araştırma Makalesi
BibTex RIS Kaynak Göster

Plastiklerin ve Mikroplastiklerin Mikrobiyal Biyodegredasyonu: Enzimatik Mekanizmalar, Biyoteknolojik Uygulamalar ve Ekotoksikolojik Perspektifler

Yıl 2025, Cilt: 5 Sayı: 2, 82 - 90, 13.10.2025
https://doi.org/10.59838/etoxec.1788079

Öz

Plastik üretimindeki küresel artış, mikroplastik ve nanoplastiklerin çevresel olarak yoğun bir şekilde birikmesine ve parçalanmasına yol açmıştır. Bu kalıcı parçacıklar artık sucul, karasal ve atmosferik ekosistemlerde bulunmakta ve toksik kimyasalları taşıyarak, mikrobiyal toplulukları bozarak ve besin zincirine girerek ekotoksikolojik riskler oluşturmakta ve potansiyel insan sağlığı etkilerine neden olmaktadır. Bu nedenle, mikroorganizmalar tarafından biyolojik olarak parçalanma, sürdürülebilir bir iyileştirme stratejisi olarak dikkat çekmektedir.
Bu derleme, mikroorganizmaların plastik ve mikroplastiklerin parçalanmasındaki rolünü inceleyerek enzimatik mekanizmalara, biyoteknolojik uygulamalara ve ilişkili risklere odaklanmaktadır. Ideonella sakaiensis, Pseudomonas, Bacillus ve Rhodococcus gibi bakteriler, genellikle biyofilm oluşumuyla güçlendirilen PETaz, MHETaz, kütinazlar ve oksidazlar aracılığıyla güçlü parçalanma yetenekleri sergilemektedir. Aspergillus ve Penicillium dahil olmak üzere mantarlar ve mikroalgler, hücre dışı enzimlerin üretimi ve sinerjik etkileşimler yoluyla katkıda bulunmaktadır. Sıcaklık, pH, tuzluluk ve oksijen seviyeleri gibi çevresel koşullar, mikrobiyal aktiviteyi ve enzim performansını doğrudan etkilemektedir. Biyoteknolojik yaklaşımlar, mikrobiyal konsorsiyumlar, genetik mühendisliği ve omik tabanlı yeni enzim keşfi yoluyla bozunma verimliliğini artırmaktadır. Biyoreaktörler ve nanopartikül destekli sistemler de dahil olmak üzere laboratuvar ölçekli uygulamalar, tek suşlara kıyasla daha yüksek bozunma oranlarına ulaşmaktadır. Ancak, doğal ortamlarda mikrobiyal stabilite, ölçeklenebilirlik ve tereftalat ve etilen glikol gibi bozunma ara maddelerinin toksisitesi gibi önemli sınırlamalar devam etmektedir.
Genel olarak, mikrobiyal biyolojik bozunma, geleneksel işlemlere umut verici bir alternatif sunmakla birlikte, ekolojik güvenlik ve ekonomik fizibilite açısından dikkatli bir değerlendirme gerektirmektedir. Bu derleme, plastik biyolojik bozunmasını ilerletmek ve sürdürülebilir atık yönetimini desteklemek için mikrobiyoloji, biyoteknoloji ve çevresel toksikolojiyi birleştiren disiplinlerarası stratejilerin önemini vurgulamaktadır.

Kaynakça

  • Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Pantos O. Plastics and the microbiome: impacts and solutions. Environmental Microbiome. 2021;16(1):2.
  •   MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61-65.
  •   Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Preda OT. Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients. 2023;15(3):617.
  •   Lv S, Li Y, Zhao S, Shao Z. Biodegradation of typical plastics: from microbial diversity to metabolic mechanisms. International Journal of Molecular Sciences. 2024;25(1):593.
  •   Muthulakshmi L, Mohan S, Tatarchuk T. Microplastics in water: types, detection, and removal strategies. Environmental Science and Pollution Research. 2023;30(36):84933-84948.
  •   Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science Advances. 2017;3(7):e1700782.
  •   Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin. 2011;62(12):2588-2597.
  •   Aytan U, Valente A, Senturk Y, Usta R, Sahin FBE, Mazlum RE, Agirbas E. First evaluation of neustonic microplastics in Black Sea waters. Marine Environmental Research. 2016;119:22-30.
  •   Rillig MC, Lehmann A, Ryo M, Bergmann J. Shaping up: toward considering the shape and form of pollutants. Environmental Science & Technology. 2019;53(14):7925-7926.
  •   Akca MO, Gündoğdu S, Akca H, Delialioğlu RA, Aksit C, Turgay OC, Harada N. An evaluation on microplastic accumulations in Turkish soils under different land uses. Science of The Total Environment. 2024;911:168609.
  •   Wright SL, Kelly FJ. Plastic and human health: a micro issue?. Environmental Science & Technology. 2017;51(12):6634-6647.
  •   Aydın S, Mücevher O, Ulvi A, Beduk F, Aydın ME, Merken O, Uzun C. Effects of long-term wastewater irrigation on microplastics pollution in agricultural soil. Environmental Science and Pollution Research. 2025;32(20):12340-12359.
  •   Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196-1199.
  •   Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology. 2018;102(18):7669-7678.
  •   Sivan A. New perspectives in plastic biodegradation. Current Opinion in Biotechnology. 2011;22(3):422-426.
  •   Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials. 2019;380:120899.
  •   Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances. 2008;26(3):246-265.
  •   Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu J, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution. 2017;225:469-480.
  •   Paço A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Rocha-Santos TA. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment. 2017;586:10-15.
  •   Danso D, Chow J, Streit WR. Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology. 2019;85(19):e01095-19.
  •   Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules. 2009;42(14):5128-5138.
  •   Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?. Microbial Biotechnology. 2017;10(6):1308-1322.
  •   Roohi Bano K, Kuddus M, Zaheer MR, Zia Q, Khan MF, Aliev G. Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology. 2017;18(5):429-440.
  •   Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216-219.
  •   Pathak VM. Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing. 2017;4(1):1-31.
  •   Vo HC, Pham MH. Ecotoxicological effects of microplastics on aquatic organisms: a review. Environmental Science and Pollution Research. 2021;28(33):44716-44725.
  •   Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences. 2009;10(9):3722-3742.
  •   Prata JC, Da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment. 2020;702:134455.
  •   Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environmental Science & Technology. 2019;53(12):7068-7074.
  •   Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Giorgini E. Plasticenta: First evidence of microplastics in human placenta. Environment International. 2021;146:106274.
  •   Xu H, Dong C, Yu Z, Ozaki Y, Hu Z, Zhang B, Xie Y. Detection and analysis of microplastics in tissues and blood of human cervical cancer patients. Environmental Research. 2024;259:119498.
  •   Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro (nano) plastics: which are fit for purpose?. Current Opinion in Environmental Science & Health. 2018;1:55-61.
  •   Aytan U, Esensoy FB, Senturk Y, Arifoğlu E, Karaoğlu K, Ceylan Y, Valente A. Plastic occurrence in commercial fish species of the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences. 2021;22(7):1-13.

Microbial Biodegradation of Plastics and Microplastics: Enzymatic Mechanisms, Biotechnological Applications, and Ecotoxicological Perspectives

Yıl 2025, Cilt: 5 Sayı: 2, 82 - 90, 13.10.2025
https://doi.org/10.59838/etoxec.1788079

Öz

The global rise in plastic production has resulted in extensive environmental accumulation and fragmentation into microplastics and nanoplastics. These persistent particles are now found in aquatic, terrestrial, and atmospheric ecosystems, posing ecotoxicological risks by transporting toxic chemicals, disrupting microbial communities, and entering the food chain, with potential human health impacts. Biodegradation by microorganisms has therefore gained attention as a sustainable remediation strategy.
This review examines the role of microorganisms in degrading plastic and microplastics, focusing on enzymatic mechanisms, biotechnological applications, and associated risks. Bacteria such as Ideonella sakaiensis, Pseudomonas, Bacillus, and Rhodococcus exhibit strong degradative abilities via PETase, MHETase, cutinases, and oxidases, often enhanced by biofilm formation. Fungi, including Aspergillus and Penicillium, as well as microalgae, contribute through the production of extracellular enzymes and synergistic interactions. Environmental conditions—such as temperature, pH, salinity, and oxygen levels—directly influence microbial activity and enzyme performance. Biotechnological approaches have improved degradation efficiency through microbial consortia, genetic engineering, and omics-based discovery of novel enzymes. Laboratory-scale applications, including bioreactors and nanoparticle-assisted systems, have achieved higher degradation rates compared to single strains. However, major limitations persist, including microbial stability in natural environments, scalability, and the toxicity of degradation intermediates such as terephthalate and ethylene glycol.
Overall, microbial biodegradation offers a promising alternative to conventional treatments but requires careful evaluation of ecological safety and economic feasibility. This review emphasizes the importance of interdisciplinary strategies combining microbiology, biotechnology, and environmental toxicology to advance plastic biodegradation and support sustainable waste management.

Kaynakça

  • Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Pantos O. Plastics and the microbiome: impacts and solutions. Environmental Microbiome. 2021;16(1):2.
  •   MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61-65.
  •   Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Preda OT. Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients. 2023;15(3):617.
  •   Lv S, Li Y, Zhao S, Shao Z. Biodegradation of typical plastics: from microbial diversity to metabolic mechanisms. International Journal of Molecular Sciences. 2024;25(1):593.
  •   Muthulakshmi L, Mohan S, Tatarchuk T. Microplastics in water: types, detection, and removal strategies. Environmental Science and Pollution Research. 2023;30(36):84933-84948.
  •   Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science Advances. 2017;3(7):e1700782.
  •   Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin. 2011;62(12):2588-2597.
  •   Aytan U, Valente A, Senturk Y, Usta R, Sahin FBE, Mazlum RE, Agirbas E. First evaluation of neustonic microplastics in Black Sea waters. Marine Environmental Research. 2016;119:22-30.
  •   Rillig MC, Lehmann A, Ryo M, Bergmann J. Shaping up: toward considering the shape and form of pollutants. Environmental Science & Technology. 2019;53(14):7925-7926.
  •   Akca MO, Gündoğdu S, Akca H, Delialioğlu RA, Aksit C, Turgay OC, Harada N. An evaluation on microplastic accumulations in Turkish soils under different land uses. Science of The Total Environment. 2024;911:168609.
  •   Wright SL, Kelly FJ. Plastic and human health: a micro issue?. Environmental Science & Technology. 2017;51(12):6634-6647.
  •   Aydın S, Mücevher O, Ulvi A, Beduk F, Aydın ME, Merken O, Uzun C. Effects of long-term wastewater irrigation on microplastics pollution in agricultural soil. Environmental Science and Pollution Research. 2025;32(20):12340-12359.
  •   Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196-1199.
  •   Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology. 2018;102(18):7669-7678.
  •   Sivan A. New perspectives in plastic biodegradation. Current Opinion in Biotechnology. 2011;22(3):422-426.
  •   Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials. 2019;380:120899.
  •   Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances. 2008;26(3):246-265.
  •   Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu J, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution. 2017;225:469-480.
  •   Paço A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Rocha-Santos TA. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment. 2017;586:10-15.
  •   Danso D, Chow J, Streit WR. Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology. 2019;85(19):e01095-19.
  •   Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules. 2009;42(14):5128-5138.
  •   Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?. Microbial Biotechnology. 2017;10(6):1308-1322.
  •   Roohi Bano K, Kuddus M, Zaheer MR, Zia Q, Khan MF, Aliev G. Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology. 2017;18(5):429-440.
  •   Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216-219.
  •   Pathak VM. Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing. 2017;4(1):1-31.
  •   Vo HC, Pham MH. Ecotoxicological effects of microplastics on aquatic organisms: a review. Environmental Science and Pollution Research. 2021;28(33):44716-44725.
  •   Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences. 2009;10(9):3722-3742.
  •   Prata JC, Da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment. 2020;702:134455.
  •   Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environmental Science & Technology. 2019;53(12):7068-7074.
  •   Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Giorgini E. Plasticenta: First evidence of microplastics in human placenta. Environment International. 2021;146:106274.
  •   Xu H, Dong C, Yu Z, Ozaki Y, Hu Z, Zhang B, Xie Y. Detection and analysis of microplastics in tissues and blood of human cervical cancer patients. Environmental Research. 2024;259:119498.
  •   Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro (nano) plastics: which are fit for purpose?. Current Opinion in Environmental Science & Health. 2018;1:55-61.
  •   Aytan U, Esensoy FB, Senturk Y, Arifoğlu E, Karaoğlu K, Ceylan Y, Valente A. Plastic occurrence in commercial fish species of the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences. 2021;22(7):1-13.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Biyoteknoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İlke Karakaş 0000-0001-6596-0879

Gönderilme Tarihi 20 Eylül 2025
Kabul Tarihi 2 Ekim 2025
Yayımlanma Tarihi 13 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE İ. Karakaş, “Microbial Biodegradation of Plastics and Microplastics: Enzymatic Mechanisms, Biotechnological Applications, and Ecotoxicological Perspectives”, Etoxec, c. 5, sy. 2, ss. 82–90, 2025, doi: 10.59838/etoxec.1788079.