İnceleme Makalesi
BibTex RIS Kaynak Göster

The Role of Environmental Pollutants in the Formation of Prenatal Neurodegeneration

Yıl 2025, Cilt: 5 Sayı: 1, 11 - 32, 04.05.2025
https://doi.org/10.59838/etoxec.1619749

Öz

Background: Neurodegeneration is the progressive loss of neurons' structural and functional components, a common feature of many neurodegenerative disorders. Its neurological side effects may significantly impact patients' mental and physical health. Due to their widespread prevalence, some neurodegenerative pathologies have gained international attention in recent years. Although its etiology is not fully known, it is suggested that environmental factors and genetic predisposition are responsible. Understanding the mechanisms that drive the development of neurodegenerative diseases will allow the development of new therapeutic strategies for their prevention and treatment. In particular, the postnatal effects of prenatal exposure have been investigated for many years. Summary: It has been long known the role of pregnancy-related factors on brain development and the impact of intrauterine changes on the development of many neurodegenerative diseases. The main mechanisms crucial in neurodegeneration are loss of neuronal function and cell death. Currently, the drugs used in the treatment of neurodegenerative diseases are used for symptomatic treatment and cannot stop the process of neuron loss. Identifying molecular commonalities of neurodegenerative diseases will help discover effective drugs for treating neurodegenerative diseases in the future. Key Messages: This review provides a comprehensive overview of the role of environmental neurotoxic exposures on prenatal neurodegeneration, the specific sensitivity of the nervous system to toxicant exposure, and the mechanisms of neurodegeneration. In a pathophysiological context, deciphering these mechanisms of prenatal neurodegeneration contributes to the discovery of therapeutic targets.

Kaynakça

  • Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review. Eur J Med Chem. 2019;169:185-199.
  • Mete F, Kilic E, Somay A, Yilmaz B. Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat. Indian J Med Res. 2012;135(2):233-9.
  • Mete F, Eyuboglu S, Vitrinel A, Kilic U, Erdogan CS, Kilic E, et al. Hyperthermia alters neurobehavior by affecting cell proliferation and neuronal survival in young male rats. Int J Dev Neurosci. 2023;83(3):307-319.
  • Esposito E, Cuzzocrea S. New therapeutic strategy for Parkinson's and Alzheimer's disease. Curr Med Chem. 2010;17(25):2764-74.
  • Kabakus N, Ayar A, Yoldas TK, Ulvi H, Dogan Y, Yilmaz B, et al. Reversal of iron deficiency anemia-induced peripheral neuropathy by iron treatment in children with iron deficiency anemia. J Trop Pediatr. 2002;48(4):204-9.
  • Seker FB, Kilic U, Caglayan B, Ethemoglu MS, Caglayan AB, Ekimci N, et al. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS. Neuroscience. 2015 Jan 22;284:349-359.
  • Faa G, Marcialis MA, Ravarino A, Piras M, Pintus MC, Fanos V. Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood? Curr Med Chem. 2014;21(33):3854-76.
  • Boots A, Wiegersma AM, Vali Y, van den Hof M, Langendam MW, Limpens J, et al. Shaping the risk for late-life neurodegenerative disease: A systematic review on prenatal risk factors for Alzheimer's disease-related volumetric brain biomarkers. Neurosci Biobehav Rev. 2023;146:105019.
  • Akkaya H, Kilic E, Dinc SE, Yilmaz B. Postacute effects of kisspeptin-10 on neuronal injury induced by L-methionine in rats. J Biochem Mol Toxicol. 2014;28(8):373-7.
  • Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022;4:837579.
  • Yilmaz B, Kutlu S, Canpolat S, Sandal S, Ayar A, Mogulkoc R, et al. Effects of paint thinner exposure on serum LH, FSH and testosterone levels and hypothalamic catecholamine contents in the male rat. Biol Pharm Bull. 2001;24(2):163-6.
  • Davis EP, Narayan AJ. Pregnancy as a period of risk, adaptation, and resilience for mothers and infants. Dev Psychopathol. 2020;32(5):1625-1639.
  • Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci. 2009;10(4):303-12.
  • Kutlu S, Yilmaz B, Canpolat S, Sandal S, Ozcan M, Kumru S, et al. Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involvement of noradrenergic neurotransmission. Neuroendocrinology. 2004;79(4):197-203.
  • Murnan AW, Keim SA, Yeates KO, Boone KM, Sheppard KW, Klebanoff MA. Behavioral and Cognitive Differences in Early Childhood related to Prenatal Marijuana Exposure. J Appl Dev Psychol. 2021;77:101348.
  • Schliep KC, Shaaban CE, Meeks H, Fraser A, Smith KR, Majersik JJ, et al. Hypertensive disorders of pregnancy and subsequent risk of Alzheimer's disease and other dementias. Alzheimers Dement (Amst). 2023;15(2):e12443.
  • Cortes-Canteli M, Iadecola C. Alzheimer's Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):942-951.
  • Darouich S, Darouich S, Gtari D, Bellamine H. CLPB Deficiency Associated Neonatal Cavitating Leukoencephalopathy: A Potential Pathomechanism Underlying Neurologic Disorder. Pediatr Dev Pathol. 2024;27(2):198-204.
  • Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe. 2024;32(12):2112-2130.e10. doi: 10.1016/j.chom.2024.11.007.
  • Erdogan MA, Turk M, Doganay GD, Sever IH, Ozkul B, Sogut I, et al. Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats. J Neuroimmune Pharmacol. 2023;18(4):573-591.
  • Zhao J, Xia F, Jiao X, Lyu X. Long COVID and its association with neurodegenerative diseases: pathogenesis, neuroimaging, and treatment. Front Neurol. 2024;15:1367974. doi: 10.3389/fneur.2024.1367974
  • Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24(3):368-378.
  • Volkow ND, Gordon JA, Freund MP. The Healthy Brain and Child Development Study-Shedding Light on Opioid Exposure, COVID-19, and Health Disparities. JAMA Psychiatry. 2021;78(5):471-472.
  • Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, et al. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci. 2020;21(11):4097.
  • Hayes LN, An K, Carloni E, Li F, Vincent E, Trippaers C, et al. Prenatal immune stress blunts microglia reactivity, impairing neurocircuitry. Nature. 2022;610(7931):327-334.
  • Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022;110(21):3458-3483.
  • Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med. 2018;215(9):2235-2245.
  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77(2):201-210.
  • Pakalapati RK, Bolisetty S, Austin MP, Oei J. Neonatal seizures from in utero venlafaxine exposure. J Paediatr Child Health. 2006 Nov;42(11):737-8.
  • Nulman I, Koren G, Rovet J, Barrera M, Pulver A, Streiner D, et al. Neurodevelopment of children following prenatal exposure to venlafaxine, selective serotonin reuptake inhibitors, or untreated maternal depression. Am J Psychiatry. 2012 Nov;169(11):1165-74.
  • Anderson KN, Lind JN, Simeone RM, Bobo WV, Mitchell AA, Riehle-Colarusso T, et al. Maternal Use of Specific Antidepressant Medications During Early Pregnancy and the Risk of Selected Birth Defects. JAMA Psychiatry. 2020 Dec 1;77(12):1246-1255.
  • Nakhai-Pour HR, Broy P, Bérard A. Use of antidepressants during pregnancy and the risk of spontaneous abortion. CMAJ. 2010;182(10):1031-7.
  • Jimenez-Solem E, Andersen JT, Petersen M, Broedbaek K, Lander AR, Afzal S, et al. SSRI use during pregnancy and risk of stillbirth and neonatal mortality. Am J Psychiatry. 2013;170(3):299-304.
  • Sasváriová M, Tyukos-Kaprinay B, Salvaras L, Belovičová K, Bögi E, Knezl V, et al. Effect of pre-gestational stress and prenatal venlafaxine administration on cardiovascular system of rat offspring. Acta Facultatis Pharmaceuticae. 2018;65(2):17–22.
  • Singh KP, Sharma P, Singh M. Prenatal Venlafaxine Exposure-Induced Neurocytoarchitectural and Neuroapoptotic Degeneration in Striatum and Hippocampus of Developing Fetal Brain, Manifesting Long-term Neurocognitive Impairments in Rat Offspring. Neurotox Res. 2022;40(5):1174-1190.
  • Singh SJ, Tandon A, Phoolmala, Srivastava T, Singh N, Goyal S, et al. Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol. 2023 Jun;60(6):3277-3298.
  • Tiwari SK, Agarwal S, Seth B, Yadav A, Ray RS, Mishra VN, et al. Inhibitory Effects of Bisphenol-A on Neural Stem Cells Proliferation and Differentiation in the Rat Brain Are Dependent on Wnt/β-Catenin Pathway. Mol Neurobiol. 2015 Dec;52(3):1735-1757.
  • Kobayashi K, Liu Y, Ichikawa H, Takemura S, Minamiyama Y. Effects of Bisphenol A on Oxidative Stress in the Rat Brain. Antioxidants (Basel). 2020 Mar 16;9(3):240.
  • Rebolledo-Solleiro D, Castillo Flores LY, Solleiro-Villavicencio H. Impact of BPA on behavior, neurodevelopment and neurodegeneration. Frontiers in bioscience (Landmark edition). 2021;26(2):363–400.
  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75-95.
  • Grohs MN, Reynolds JE, Liu J, Martin JW, Pollock T, Lebel C, et al. APrON Study Team. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ Health. 2019 Oct 15;18(1):85.
  • Yılmaz B, Seyran AD, Sandal S, Aydın M, Colakoglu N, Kocer M, et al. Modulatory effects of Aroclors 1221 and 1254 on bone turnover and vertebral histology in intact and ovariectomized rats. Toxicology Letters. 2006;166:276-284.
  • Uslu U, Sandal S, Cumbul A, Yildiz S, Aydin M, Yilmaz B. Evaluation of estrogenic effects of polychlorinated biphenyls and organochlorinated pesticides using immature rat uterotrophic assay. Hum Exp Toxicol. 2013;32:476-82.
  • Kutlu S, Colakoglu N, Halifeoglu I, Sandal S, Seyran A, Aydin M, et al. Comparative Evaluation of Hepatotoxic and Nephrotoxic Effects of Aroclors 1221 and 1254 in Female Rats. Cell Biochemistry & Function. 2007;25:167-172.
  • Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. International Journal of Molecular Sciences. 2022;23(5):2894.
  • Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology. 2020 Dec 1;161(12):bqaa164.
  • Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506-516.
  • Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008 Feb;36(2):289-310.
  • Sun B, Wallace ER, Ni Y, Loftus CT, Szpiro A, Day D, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognition in early childhood. Environ Int. 2023 Aug;178:108009.
  • Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int. 2015 Mar;22(5):3631-9.
  • McCallister MM, Maguire M, Ramesh A, Aimin Q, Liu S, Khoshbouei H, et al. Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology. 2008 Sep;29(5):846-54.
  • Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics. 2009 Aug;124(2):e195-202.
  • Perera F, Li TY, Lin C, Tang D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ Res. 2012 Apr;114:40-6.
  • Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006 Aug;114(8):1287-92.
  • Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010 Sep;118(9):1326-31.
  • Guxens M, Garcia-Esteban R, Giorgis-Allemand L, Forns J, Badaloni C, Ballester F, et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology. 2014 Sep;25(5):636-47.
  • Lertxundi A, Baccini M, Lertxundi N, Fano E, Aranbarri A, Martínez MD, et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. Environ Int. 2015 Jul;80:33-40.
  • Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, et al. Air Pollution and Cognitive Development at Age 7 in a Prospective Italian Birth Cohort. Epidemiology. 2016 Mar;27(2):228-36.
  • Freire C, Ramos R, Puertas R, Lopez-Espinosa MJ, Julvez J, Aguilera I, et al. Association of traffic-related air pollution with cognitive development in children. J Epidemiol Community Health. 2010 Mar;64(3):223-8.
  • van Kempen E, Fischer P, Janssen N, Houthuijs D, van Kamp I, Stansfeld S, et al. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ Res. 2012 May;115:18-25
  • Chiu YH, Bellinger DC, Coull BA, Anderson S, Barber R, Wright RO, et al. Associations between traffic-related black carbon exposure and attention in a prospective birth cohort of urban children. Environ Health Perspect. 2013 Jul;121(7):859-64.
  • Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol. 2008 Feb 1;167(3):280-6.
  • Gundacker C, Hengstschläger M. The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr. 2012 May;162(9-10):201-6.
  • Lin CM, Doyle P, Wang D, Hwang YH, Chen PC. Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med. 2011 Sep;68(9):641-6.
  • Tolins M, Ruchirawat M, Landrigan P. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health. 2014 Jul-Aug;80(4):303-14.
  • Furuya M, Ishida J, Aoki I, Fukamizu A. Pathophysiology of placentation abnormalities in pregnancy-induced hypertension. Vasc Health Risk Manag. 2008;4(6):1301-13.
  • Choi BH. The effects of methylmercury on the developing brain. Prog Neurobiol. 1989;32(6):447-70.
  • Piloni NE, Fernandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology. 2013 Dec 6;314(1):174-82.
  • Rodríguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M. Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol. 2002 Nov-Dec;24(6):743-50.
  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6361-6.
  • Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. 2010 Dec;118(2):586-601.
  • Xi S, Guo L, Qi R, Sun W, Jin Y, Sun G. Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain. J Biochem Mol Toxicol. 2010 Nov-Dec;24(6):368-78.
  • Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, et al. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology. 2008 Jul;29(4):727-34.
  • Rao MV, Avani G. Arsenic induced free radical toxicity in brain of mice. Indian J Exp Biol. 2004 May;42(5):495-8.
  • Namgung U, Xia Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol. 2001 Jul 15;174(2):130-8.
  • Felix K, Manna SK, Wise K, Barr J, Ramesh GT. Low levels of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol. 2005;19(2):67-77.
  • Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol. 2016 Feb;36(2):179-88.
  • Ramirez Ortega D, Ovalle Rodríguez P, Pineda B, González Esquivel DF, Ramos Chávez LA, Vázquez Cervantes GI, et al. Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation. Sci Rep. 2020 Feb 21;10(1):3184.
  • Yılmaz B, Terekeci H, Sandal S, Keleştimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in Endocrine and Metabolic Disorders. 2020;21:127-147.
  • Ağuş S, Akkaya H, Dağlıoğlu N, Eyuboğlu S, Atasayan O, Mete F, et al. Polychlorinated biphenyls and organochlorine pesticides in breast milk samples and their correlation with dietary and reproductive factors in lactating mothers in Istanbul. Environ Sci Pollut Res Int. 2022;29:3463-3473.
  • Yilmaz B, Sandal S, Ayvaci H, Tug N, Vitrinel A. Genotoxicity profiles in exfoliated human mammary cells recovered from lactating mothers in Istanbul; relationship with demographic and dietary factors. Mutation Research. 2012;749:17-22.
  • Sandal S, Yılmaz B, Chen CH, Carpenter DO. Comparative effects of technical toxaphene, 2,5-dichloro-3-biphenylol and octabromodiphenylether on cell viability, [Ca(2+)](i) levels and membrane fluidity in mouse thymocytes. Toxicology Lett, 2004;151:417-28.
  • Yılmaz B, Seyran AD, Sandal S, Aydın M, Colakoglu N, Kocer M, et al. Modulatory effects of Aroclors 1221 and 1254 on bone turnover and vertebral histology in intact and ovariectomized rats. Toxicology Letters. 2006;166:276-284.
  • Al-Obaidi ZAF, Erdogan CS, Sümer E, Özgün HB, Gemici B, Sandal S, et al. Investigation of obesogenic effects of hexachlorobenzene, DDT and DDE in male rats. Gen Comp Endocrinol. 2022;327:114098.
  • Saeedi Saravi SS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016 Jan 15;145:255-64.
  • Shen H, Main KM, Kaleva M, Virtanen H, Haavisto AM, Skakkebaek NE, et al. Prenatal organochlorine pesticides in placentas from Finland: exposure of male infants born during 1997-2001. Placenta. 2005 Jul;26(6):512-4. Cheslack-Postava K, Rantakokko PV, Hinkka-Yli-Salomäki S, Surcel HM, McKeague IW, Kiviranta HA, et al. Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: A pilot study. Neurotoxicol Teratol. 2013 Jul-Aug;38:1-5.
  • Boucher O, Simard MN, Muckle G, Rouget F, Kadhel P, Bataille H, et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology. 2013 Mar;35:162-8.
  • Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, et al. Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res. 2012 Oct;118:79-85.
  • Crans RAJ, Ciruela F. Dopaminergic-cholinergic imbalance in movement disorders: a role for the novel striatal dopamine D2- muscarinic acetylcholine M1 receptor heteromer. Neural Regen Res. 2021;16(7):1406-1408.
  • Acharya S, Kim KM. Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci. 2021;22(9):4299.
  • Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect. 2007 Oct;115(10):1482-9.
  • Sussman TJ, Baker BH, Wakhloo AJ, Gillet V, Abdelouahab N, Whittingstall K, et al. The relationship between persistent organic pollutants and Attention Deficit Hyperactivity Disorder phenotypes: Evidence from task-based neural activity in an observational study of a community sample of Canadian mother-child dyads. Environ Res. 2022 Apr 15;206:112593.
  • Tian YH, Hwan Kim S, Lee SY, Jang CG. Lactational and postnatal exposure to polychlorinated biphenyls induces sex-specific anxiolytic behavior and cognitive deficit in mice offspring. Synapse. 2011 Oct;65(10):1032-41.
  • Forns J, Lertxundi N, Aranbarri A, Murcia M, Gascon M, Martinez D, et al. Prenatal exposure to organochlorine compounds and neuropsychological development up to two years of life. Environ Int. 2012 Sep 15;45:72-7.
  • ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003 Sep;250(9):1025-36.
  • Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, et al. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics. 2020 Nov 1;12(11):1656-1678.
  • Shahid MA, Ashraf MA, Sharma S. Physiology, Thyroid Hormone. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500006/
  • Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 2017;99:55-77.
  • Shelton JF, Hertz-Picciotto I, Pessah IN. Tipping the balance of autism risk: potential mechanisms linking pesticides and autism. Environ Health Perspect. 2012;120(7):944-951.
  • Park HY, Park JS, Sovcikova E, Kocan A, Linderholm L, Bergman A, et al. Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect. 2009 Oct;117(10):1600-6.
  • Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology. 2004 Dec;25(6):981-8.
  • Sandal S, Yılmaz B, Carpenter DO. Genotoxic effects of PCB 52 and PCB 77 on cultured human peripheral lymphocytes. Mutation Research. 2008;654:88-92.
  • Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, et al. A Neurometabolic Pattern of Elevated Myo-Inositol in Children Who Are HIV-Exposed and Uninfected: A South African Birth Cohort Study. Front Immunol. 2022 Mar 28;13:800273.
  • Campbell LR, Pang Y, Ojeda NB, Zheng B, Rhodes PG, Alexander BT. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr Res. 2012;71(6):645-652.
  • Leviton A, Fichorova RN, O'Shea TM, Kuban K, Paneth N, Dammann O, et al. Two-hit model of brain damage in the very preterm newborn: small for gestational age and postnatal systemic inflammation. Pediatr Res. 2013 Mar;73(3):362-70.
  • Sevenoaks T, Wedderburn CJ, Donald KA, Barnett W, Zar HJ, Stein DJ, et al. Association of maternal and infant inflammation with neurodevelopment in HIV-exposed uninfected children in a South African birth cohort. Brain Behav Immun. 2021 Jan;91:65-73.
  • Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model. Am J Drug Alcohol Abuse. 2023 May 4;49(3):302-320.
  • Drew PD, Kane CJ. Fetal alcohol spectrum disorders and neuroimmune changes. Int Rev Neurobiol. 2014;118:41-80.
  • Chen WJ, Maier SE, Parnell SE, West JR. Alcohol and the developing brain: neuroanatomical studies. Alcohol Res Health. 2003;27(2):174-80.
  • Neri M, Bello S, Turillazzi E, Riezzo I. Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit? Curr Pharm Des. 2015;21(11):1358-68.
  • Forray A. Substance use during pregnancy. F1000Res. 2016 May 13;5:F1000 Faculty Rev-887.
  • Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci. 2014;8:361.
  • Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014;370(23):2219-2227
  • Anbalagan S, Mendez MD. Neonatal Abstinence Syndrome. [Updated 2023 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551498/
  • Stankovic IN, Colak D. Prenatal Drugs and Their Effects on the Developing Brain: Insights From Three-Dimensional Human Organoids. Front Neurosci. 2022;16:848648.
  • Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci. 2022;15:919773.
  • Nguyen D, Smith LM, Lagasse LL, Derauf C, Grant P, Shah R, et al. Intrauterine growth of infants exposed to prenatal methamphetamine: results from the infant development, environment, and lifestyle study. J Pediatr. 2010 Aug;157(2):337-9.
  • Smith L, Yonekura ML, Wallace T, Berman N, Kuo J, Berkowitz C. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr. 2003 Feb;24(1):17-23.
  • Jones J, Rios R, Jones M, Lewis D, Plate C. Determination of amphetamine and methamphetamine in umbilical cord using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(29):3701-3706.
  • Smid MC, Metz TD, Gordon AJ. Stimulant Use in Pregnancy: An Under-recognized Epidemic Among Pregnant Women. Clin Obstet Gynecol. 2019;62(1):168-184.
  • Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology. 2015;40(1):61-87.
  • Singer LT, Moore DG, Min MO, Goodwin J, Turner JJ, Fulton S, et al. Motor delays in MDMA (ecstasy) exposed infants persist to 2 years. Neurotoxicol Teratol. 2016 Mar-Apr;54:22-8.
  • Thompson VB, Heiman J, Chambers JB, Benoit SC, Buesing WR, Norman MK, et al. Long-term behavioral consequences of prenatal MDMA exposure. Physiol Behav. 2009 Mar 23;96(4-5):593-601.
  • Blood-Siegfried J, Rende EK. The long-term effects of prenatal nicotine exposure on neurologic development. J Midwifery Womens Health. 2010;55(2):143-152.
  • Sandal S, Yilmaz B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol. 2011 Oct;26(5):433-42.
  • Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci. 2020 Nov 25;14:609005.
  • Sabbouh T, Torbey MT. Malnutrition in Stroke Patients: Risk Factors, Assessment, and Management. Neurocrit Care. 2018 Dec;29(3):374-384.
  • Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. Dialogues Clin Neurosci. 2018;20(4):301-325.
  • Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients. 2021;13(10):3530.
  • Huang C, Phillips MR, Zhang Y, Zhang J, Shi Q, Song Z, et al. Malnutrition in early life and adult mental health: evidence from a natural experiment. Soc Sci Med. 2013 Nov;97:259-66.
  • Pająk R, Mendela E, Będkowska N, Paprocka J. Update on Neuropathies in Inborn Errors of Metabolism. Brain Sci. 2021;11(6):763.
  • Ledri M, Sørensen AT, Kokaia M, Woldbye DPD, Gøtzsche CR. Editorial: Gene Therapy in the CNS - Progress and Prospects for Novel Therapies. Front Mol Neurosci. 2021 Oct 20;14:778134.
  • Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther. 2006 Jul;14(1):14-24.
  • Wei W, Wang Y, Liu Y, Dai CL, Tung YC, Liu F, et al. Prenatal to early postnatal neurotrophic treatment prevents Alzheimer-like behavior and pathology in mice. Alzheimers Res Ther. 2020 Aug 27;12(1):102.
  • Massaro G, Mattar CNZ, Wong AMS, Sirka E, Buckley SMK, Herbert BR, et al. Fetal gene therapy for neurodegenerative disease of infants. Nature medicine. 2018,24(9): 1317–1323.
  • Zhao Q, Dai W, Chen HY, Jacobs RE, Zlokovic BV, Lund BT, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113310119.
  • Blanche S. Mini review: Prevention of mother-child transmission of HIV: 25 years of continuous progress toward the eradication of pediatric AIDS?. Virulence. 2020;11(1):14-22.

The Role of Environmental Pollutants in the Formation of Prenatal Neurodegeneration

Yıl 2025, Cilt: 5 Sayı: 1, 11 - 32, 04.05.2025
https://doi.org/10.59838/etoxec.1619749

Öz

Background: Neurodegeneration is the progressive loss of neurons' structural and functional components, a common feature of many neurodegenerative disorders. Its neurological side effects may significantly impact patients' mental and physical health. Due to their widespread prevalence, some neurodegenerative pathologies have gained international attention in recent years. Although its etiology is not fully known, it is suggested that environmental factors and genetic predisposition are responsible. Understanding the mechanisms that drive the development of neurodegenerative diseases will allow the development of new therapeutic strategies for their prevention and treatment. In particular, the postnatal effects of prenatal exposure have been investigated for many years. Summary: It has been long known the role of pregnancy-related factors on brain development and the impact of intrauterine changes on the development of many neurodegenerative diseases. The main mechanisms crucial in neurodegeneration are loss of neuronal function and cell death. Currently, the drugs used in the treatment of neurodegenerative diseases are used for symptomatic treatment and cannot stop the process of neuron loss. Identifying molecular commonalities of neurodegenerative diseases will help discover effective drugs for treating neurodegenerative diseases in the future. Key Messages: This review provides a comprehensive overview of the role of environmental neurotoxic exposures on prenatal neurodegeneration, the specific sensitivity of the nervous system to toxicant exposure, and the mechanisms of neurodegeneration. In a pathophysiological context, deciphering these mechanisms of prenatal neurodegeneration contributes to the discovery of therapeutic targets.

Kaynakça

  • Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review. Eur J Med Chem. 2019;169:185-199.
  • Mete F, Kilic E, Somay A, Yilmaz B. Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat. Indian J Med Res. 2012;135(2):233-9.
  • Mete F, Eyuboglu S, Vitrinel A, Kilic U, Erdogan CS, Kilic E, et al. Hyperthermia alters neurobehavior by affecting cell proliferation and neuronal survival in young male rats. Int J Dev Neurosci. 2023;83(3):307-319.
  • Esposito E, Cuzzocrea S. New therapeutic strategy for Parkinson's and Alzheimer's disease. Curr Med Chem. 2010;17(25):2764-74.
  • Kabakus N, Ayar A, Yoldas TK, Ulvi H, Dogan Y, Yilmaz B, et al. Reversal of iron deficiency anemia-induced peripheral neuropathy by iron treatment in children with iron deficiency anemia. J Trop Pediatr. 2002;48(4):204-9.
  • Seker FB, Kilic U, Caglayan B, Ethemoglu MS, Caglayan AB, Ekimci N, et al. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS. Neuroscience. 2015 Jan 22;284:349-359.
  • Faa G, Marcialis MA, Ravarino A, Piras M, Pintus MC, Fanos V. Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood? Curr Med Chem. 2014;21(33):3854-76.
  • Boots A, Wiegersma AM, Vali Y, van den Hof M, Langendam MW, Limpens J, et al. Shaping the risk for late-life neurodegenerative disease: A systematic review on prenatal risk factors for Alzheimer's disease-related volumetric brain biomarkers. Neurosci Biobehav Rev. 2023;146:105019.
  • Akkaya H, Kilic E, Dinc SE, Yilmaz B. Postacute effects of kisspeptin-10 on neuronal injury induced by L-methionine in rats. J Biochem Mol Toxicol. 2014;28(8):373-7.
  • Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022;4:837579.
  • Yilmaz B, Kutlu S, Canpolat S, Sandal S, Ayar A, Mogulkoc R, et al. Effects of paint thinner exposure on serum LH, FSH and testosterone levels and hypothalamic catecholamine contents in the male rat. Biol Pharm Bull. 2001;24(2):163-6.
  • Davis EP, Narayan AJ. Pregnancy as a period of risk, adaptation, and resilience for mothers and infants. Dev Psychopathol. 2020;32(5):1625-1639.
  • Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci. 2009;10(4):303-12.
  • Kutlu S, Yilmaz B, Canpolat S, Sandal S, Ozcan M, Kumru S, et al. Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involvement of noradrenergic neurotransmission. Neuroendocrinology. 2004;79(4):197-203.
  • Murnan AW, Keim SA, Yeates KO, Boone KM, Sheppard KW, Klebanoff MA. Behavioral and Cognitive Differences in Early Childhood related to Prenatal Marijuana Exposure. J Appl Dev Psychol. 2021;77:101348.
  • Schliep KC, Shaaban CE, Meeks H, Fraser A, Smith KR, Majersik JJ, et al. Hypertensive disorders of pregnancy and subsequent risk of Alzheimer's disease and other dementias. Alzheimers Dement (Amst). 2023;15(2):e12443.
  • Cortes-Canteli M, Iadecola C. Alzheimer's Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):942-951.
  • Darouich S, Darouich S, Gtari D, Bellamine H. CLPB Deficiency Associated Neonatal Cavitating Leukoencephalopathy: A Potential Pathomechanism Underlying Neurologic Disorder. Pediatr Dev Pathol. 2024;27(2):198-204.
  • Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe. 2024;32(12):2112-2130.e10. doi: 10.1016/j.chom.2024.11.007.
  • Erdogan MA, Turk M, Doganay GD, Sever IH, Ozkul B, Sogut I, et al. Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats. J Neuroimmune Pharmacol. 2023;18(4):573-591.
  • Zhao J, Xia F, Jiao X, Lyu X. Long COVID and its association with neurodegenerative diseases: pathogenesis, neuroimaging, and treatment. Front Neurol. 2024;15:1367974. doi: 10.3389/fneur.2024.1367974
  • Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24(3):368-378.
  • Volkow ND, Gordon JA, Freund MP. The Healthy Brain and Child Development Study-Shedding Light on Opioid Exposure, COVID-19, and Health Disparities. JAMA Psychiatry. 2021;78(5):471-472.
  • Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, et al. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci. 2020;21(11):4097.
  • Hayes LN, An K, Carloni E, Li F, Vincent E, Trippaers C, et al. Prenatal immune stress blunts microglia reactivity, impairing neurocircuitry. Nature. 2022;610(7931):327-334.
  • Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022;110(21):3458-3483.
  • Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med. 2018;215(9):2235-2245.
  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77(2):201-210.
  • Pakalapati RK, Bolisetty S, Austin MP, Oei J. Neonatal seizures from in utero venlafaxine exposure. J Paediatr Child Health. 2006 Nov;42(11):737-8.
  • Nulman I, Koren G, Rovet J, Barrera M, Pulver A, Streiner D, et al. Neurodevelopment of children following prenatal exposure to venlafaxine, selective serotonin reuptake inhibitors, or untreated maternal depression. Am J Psychiatry. 2012 Nov;169(11):1165-74.
  • Anderson KN, Lind JN, Simeone RM, Bobo WV, Mitchell AA, Riehle-Colarusso T, et al. Maternal Use of Specific Antidepressant Medications During Early Pregnancy and the Risk of Selected Birth Defects. JAMA Psychiatry. 2020 Dec 1;77(12):1246-1255.
  • Nakhai-Pour HR, Broy P, Bérard A. Use of antidepressants during pregnancy and the risk of spontaneous abortion. CMAJ. 2010;182(10):1031-7.
  • Jimenez-Solem E, Andersen JT, Petersen M, Broedbaek K, Lander AR, Afzal S, et al. SSRI use during pregnancy and risk of stillbirth and neonatal mortality. Am J Psychiatry. 2013;170(3):299-304.
  • Sasváriová M, Tyukos-Kaprinay B, Salvaras L, Belovičová K, Bögi E, Knezl V, et al. Effect of pre-gestational stress and prenatal venlafaxine administration on cardiovascular system of rat offspring. Acta Facultatis Pharmaceuticae. 2018;65(2):17–22.
  • Singh KP, Sharma P, Singh M. Prenatal Venlafaxine Exposure-Induced Neurocytoarchitectural and Neuroapoptotic Degeneration in Striatum and Hippocampus of Developing Fetal Brain, Manifesting Long-term Neurocognitive Impairments in Rat Offspring. Neurotox Res. 2022;40(5):1174-1190.
  • Singh SJ, Tandon A, Phoolmala, Srivastava T, Singh N, Goyal S, et al. Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol. 2023 Jun;60(6):3277-3298.
  • Tiwari SK, Agarwal S, Seth B, Yadav A, Ray RS, Mishra VN, et al. Inhibitory Effects of Bisphenol-A on Neural Stem Cells Proliferation and Differentiation in the Rat Brain Are Dependent on Wnt/β-Catenin Pathway. Mol Neurobiol. 2015 Dec;52(3):1735-1757.
  • Kobayashi K, Liu Y, Ichikawa H, Takemura S, Minamiyama Y. Effects of Bisphenol A on Oxidative Stress in the Rat Brain. Antioxidants (Basel). 2020 Mar 16;9(3):240.
  • Rebolledo-Solleiro D, Castillo Flores LY, Solleiro-Villavicencio H. Impact of BPA on behavior, neurodevelopment and neurodegeneration. Frontiers in bioscience (Landmark edition). 2021;26(2):363–400.
  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75-95.
  • Grohs MN, Reynolds JE, Liu J, Martin JW, Pollock T, Lebel C, et al. APrON Study Team. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ Health. 2019 Oct 15;18(1):85.
  • Yılmaz B, Seyran AD, Sandal S, Aydın M, Colakoglu N, Kocer M, et al. Modulatory effects of Aroclors 1221 and 1254 on bone turnover and vertebral histology in intact and ovariectomized rats. Toxicology Letters. 2006;166:276-284.
  • Uslu U, Sandal S, Cumbul A, Yildiz S, Aydin M, Yilmaz B. Evaluation of estrogenic effects of polychlorinated biphenyls and organochlorinated pesticides using immature rat uterotrophic assay. Hum Exp Toxicol. 2013;32:476-82.
  • Kutlu S, Colakoglu N, Halifeoglu I, Sandal S, Seyran A, Aydin M, et al. Comparative Evaluation of Hepatotoxic and Nephrotoxic Effects of Aroclors 1221 and 1254 in Female Rats. Cell Biochemistry & Function. 2007;25:167-172.
  • Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. International Journal of Molecular Sciences. 2022;23(5):2894.
  • Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology. 2020 Dec 1;161(12):bqaa164.
  • Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506-516.
  • Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008 Feb;36(2):289-310.
  • Sun B, Wallace ER, Ni Y, Loftus CT, Szpiro A, Day D, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognition in early childhood. Environ Int. 2023 Aug;178:108009.
  • Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int. 2015 Mar;22(5):3631-9.
  • McCallister MM, Maguire M, Ramesh A, Aimin Q, Liu S, Khoshbouei H, et al. Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology. 2008 Sep;29(5):846-54.
  • Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics. 2009 Aug;124(2):e195-202.
  • Perera F, Li TY, Lin C, Tang D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ Res. 2012 Apr;114:40-6.
  • Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006 Aug;114(8):1287-92.
  • Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010 Sep;118(9):1326-31.
  • Guxens M, Garcia-Esteban R, Giorgis-Allemand L, Forns J, Badaloni C, Ballester F, et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology. 2014 Sep;25(5):636-47.
  • Lertxundi A, Baccini M, Lertxundi N, Fano E, Aranbarri A, Martínez MD, et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. Environ Int. 2015 Jul;80:33-40.
  • Porta D, Narduzzi S, Badaloni C, Bucci S, Cesaroni G, Colelli V, et al. Air Pollution and Cognitive Development at Age 7 in a Prospective Italian Birth Cohort. Epidemiology. 2016 Mar;27(2):228-36.
  • Freire C, Ramos R, Puertas R, Lopez-Espinosa MJ, Julvez J, Aguilera I, et al. Association of traffic-related air pollution with cognitive development in children. J Epidemiol Community Health. 2010 Mar;64(3):223-8.
  • van Kempen E, Fischer P, Janssen N, Houthuijs D, van Kamp I, Stansfeld S, et al. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ Res. 2012 May;115:18-25
  • Chiu YH, Bellinger DC, Coull BA, Anderson S, Barber R, Wright RO, et al. Associations between traffic-related black carbon exposure and attention in a prospective birth cohort of urban children. Environ Health Perspect. 2013 Jul;121(7):859-64.
  • Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol. 2008 Feb 1;167(3):280-6.
  • Gundacker C, Hengstschläger M. The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr. 2012 May;162(9-10):201-6.
  • Lin CM, Doyle P, Wang D, Hwang YH, Chen PC. Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med. 2011 Sep;68(9):641-6.
  • Tolins M, Ruchirawat M, Landrigan P. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health. 2014 Jul-Aug;80(4):303-14.
  • Furuya M, Ishida J, Aoki I, Fukamizu A. Pathophysiology of placentation abnormalities in pregnancy-induced hypertension. Vasc Health Risk Manag. 2008;4(6):1301-13.
  • Choi BH. The effects of methylmercury on the developing brain. Prog Neurobiol. 1989;32(6):447-70.
  • Piloni NE, Fernandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology. 2013 Dec 6;314(1):174-82.
  • Rodríguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M. Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol. 2002 Nov-Dec;24(6):743-50.
  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6361-6.
  • Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. 2010 Dec;118(2):586-601.
  • Xi S, Guo L, Qi R, Sun W, Jin Y, Sun G. Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain. J Biochem Mol Toxicol. 2010 Nov-Dec;24(6):368-78.
  • Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, et al. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology. 2008 Jul;29(4):727-34.
  • Rao MV, Avani G. Arsenic induced free radical toxicity in brain of mice. Indian J Exp Biol. 2004 May;42(5):495-8.
  • Namgung U, Xia Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol. 2001 Jul 15;174(2):130-8.
  • Felix K, Manna SK, Wise K, Barr J, Ramesh GT. Low levels of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol. 2005;19(2):67-77.
  • Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol. 2016 Feb;36(2):179-88.
  • Ramirez Ortega D, Ovalle Rodríguez P, Pineda B, González Esquivel DF, Ramos Chávez LA, Vázquez Cervantes GI, et al. Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation. Sci Rep. 2020 Feb 21;10(1):3184.
  • Yılmaz B, Terekeci H, Sandal S, Keleştimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in Endocrine and Metabolic Disorders. 2020;21:127-147.
  • Ağuş S, Akkaya H, Dağlıoğlu N, Eyuboğlu S, Atasayan O, Mete F, et al. Polychlorinated biphenyls and organochlorine pesticides in breast milk samples and their correlation with dietary and reproductive factors in lactating mothers in Istanbul. Environ Sci Pollut Res Int. 2022;29:3463-3473.
  • Yilmaz B, Sandal S, Ayvaci H, Tug N, Vitrinel A. Genotoxicity profiles in exfoliated human mammary cells recovered from lactating mothers in Istanbul; relationship with demographic and dietary factors. Mutation Research. 2012;749:17-22.
  • Sandal S, Yılmaz B, Chen CH, Carpenter DO. Comparative effects of technical toxaphene, 2,5-dichloro-3-biphenylol and octabromodiphenylether on cell viability, [Ca(2+)](i) levels and membrane fluidity in mouse thymocytes. Toxicology Lett, 2004;151:417-28.
  • Yılmaz B, Seyran AD, Sandal S, Aydın M, Colakoglu N, Kocer M, et al. Modulatory effects of Aroclors 1221 and 1254 on bone turnover and vertebral histology in intact and ovariectomized rats. Toxicology Letters. 2006;166:276-284.
  • Al-Obaidi ZAF, Erdogan CS, Sümer E, Özgün HB, Gemici B, Sandal S, et al. Investigation of obesogenic effects of hexachlorobenzene, DDT and DDE in male rats. Gen Comp Endocrinol. 2022;327:114098.
  • Saeedi Saravi SS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016 Jan 15;145:255-64.
  • Shen H, Main KM, Kaleva M, Virtanen H, Haavisto AM, Skakkebaek NE, et al. Prenatal organochlorine pesticides in placentas from Finland: exposure of male infants born during 1997-2001. Placenta. 2005 Jul;26(6):512-4. Cheslack-Postava K, Rantakokko PV, Hinkka-Yli-Salomäki S, Surcel HM, McKeague IW, Kiviranta HA, et al. Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: A pilot study. Neurotoxicol Teratol. 2013 Jul-Aug;38:1-5.
  • Boucher O, Simard MN, Muckle G, Rouget F, Kadhel P, Bataille H, et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology. 2013 Mar;35:162-8.
  • Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, et al. Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res. 2012 Oct;118:79-85.
  • Crans RAJ, Ciruela F. Dopaminergic-cholinergic imbalance in movement disorders: a role for the novel striatal dopamine D2- muscarinic acetylcholine M1 receptor heteromer. Neural Regen Res. 2021;16(7):1406-1408.
  • Acharya S, Kim KM. Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci. 2021;22(9):4299.
  • Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect. 2007 Oct;115(10):1482-9.
  • Sussman TJ, Baker BH, Wakhloo AJ, Gillet V, Abdelouahab N, Whittingstall K, et al. The relationship between persistent organic pollutants and Attention Deficit Hyperactivity Disorder phenotypes: Evidence from task-based neural activity in an observational study of a community sample of Canadian mother-child dyads. Environ Res. 2022 Apr 15;206:112593.
  • Tian YH, Hwan Kim S, Lee SY, Jang CG. Lactational and postnatal exposure to polychlorinated biphenyls induces sex-specific anxiolytic behavior and cognitive deficit in mice offspring. Synapse. 2011 Oct;65(10):1032-41.
  • Forns J, Lertxundi N, Aranbarri A, Murcia M, Gascon M, Martinez D, et al. Prenatal exposure to organochlorine compounds and neuropsychological development up to two years of life. Environ Int. 2012 Sep 15;45:72-7.
  • ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003 Sep;250(9):1025-36.
  • Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, et al. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics. 2020 Nov 1;12(11):1656-1678.
  • Shahid MA, Ashraf MA, Sharma S. Physiology, Thyroid Hormone. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500006/
  • Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 2017;99:55-77.
  • Shelton JF, Hertz-Picciotto I, Pessah IN. Tipping the balance of autism risk: potential mechanisms linking pesticides and autism. Environ Health Perspect. 2012;120(7):944-951.
  • Park HY, Park JS, Sovcikova E, Kocan A, Linderholm L, Bergman A, et al. Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect. 2009 Oct;117(10):1600-6.
  • Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology. 2004 Dec;25(6):981-8.
  • Sandal S, Yılmaz B, Carpenter DO. Genotoxic effects of PCB 52 and PCB 77 on cultured human peripheral lymphocytes. Mutation Research. 2008;654:88-92.
  • Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, et al. A Neurometabolic Pattern of Elevated Myo-Inositol in Children Who Are HIV-Exposed and Uninfected: A South African Birth Cohort Study. Front Immunol. 2022 Mar 28;13:800273.
  • Campbell LR, Pang Y, Ojeda NB, Zheng B, Rhodes PG, Alexander BT. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr Res. 2012;71(6):645-652.
  • Leviton A, Fichorova RN, O'Shea TM, Kuban K, Paneth N, Dammann O, et al. Two-hit model of brain damage in the very preterm newborn: small for gestational age and postnatal systemic inflammation. Pediatr Res. 2013 Mar;73(3):362-70.
  • Sevenoaks T, Wedderburn CJ, Donald KA, Barnett W, Zar HJ, Stein DJ, et al. Association of maternal and infant inflammation with neurodevelopment in HIV-exposed uninfected children in a South African birth cohort. Brain Behav Immun. 2021 Jan;91:65-73.
  • Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model. Am J Drug Alcohol Abuse. 2023 May 4;49(3):302-320.
  • Drew PD, Kane CJ. Fetal alcohol spectrum disorders and neuroimmune changes. Int Rev Neurobiol. 2014;118:41-80.
  • Chen WJ, Maier SE, Parnell SE, West JR. Alcohol and the developing brain: neuroanatomical studies. Alcohol Res Health. 2003;27(2):174-80.
  • Neri M, Bello S, Turillazzi E, Riezzo I. Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit? Curr Pharm Des. 2015;21(11):1358-68.
  • Forray A. Substance use during pregnancy. F1000Res. 2016 May 13;5:F1000 Faculty Rev-887.
  • Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci. 2014;8:361.
  • Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014;370(23):2219-2227
  • Anbalagan S, Mendez MD. Neonatal Abstinence Syndrome. [Updated 2023 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551498/
  • Stankovic IN, Colak D. Prenatal Drugs and Their Effects on the Developing Brain: Insights From Three-Dimensional Human Organoids. Front Neurosci. 2022;16:848648.
  • Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci. 2022;15:919773.
  • Nguyen D, Smith LM, Lagasse LL, Derauf C, Grant P, Shah R, et al. Intrauterine growth of infants exposed to prenatal methamphetamine: results from the infant development, environment, and lifestyle study. J Pediatr. 2010 Aug;157(2):337-9.
  • Smith L, Yonekura ML, Wallace T, Berman N, Kuo J, Berkowitz C. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr. 2003 Feb;24(1):17-23.
  • Jones J, Rios R, Jones M, Lewis D, Plate C. Determination of amphetamine and methamphetamine in umbilical cord using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(29):3701-3706.
  • Smid MC, Metz TD, Gordon AJ. Stimulant Use in Pregnancy: An Under-recognized Epidemic Among Pregnant Women. Clin Obstet Gynecol. 2019;62(1):168-184.
  • Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology. 2015;40(1):61-87.
  • Singer LT, Moore DG, Min MO, Goodwin J, Turner JJ, Fulton S, et al. Motor delays in MDMA (ecstasy) exposed infants persist to 2 years. Neurotoxicol Teratol. 2016 Mar-Apr;54:22-8.
  • Thompson VB, Heiman J, Chambers JB, Benoit SC, Buesing WR, Norman MK, et al. Long-term behavioral consequences of prenatal MDMA exposure. Physiol Behav. 2009 Mar 23;96(4-5):593-601.
  • Blood-Siegfried J, Rende EK. The long-term effects of prenatal nicotine exposure on neurologic development. J Midwifery Womens Health. 2010;55(2):143-152.
  • Sandal S, Yilmaz B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol. 2011 Oct;26(5):433-42.
  • Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci. 2020 Nov 25;14:609005.
  • Sabbouh T, Torbey MT. Malnutrition in Stroke Patients: Risk Factors, Assessment, and Management. Neurocrit Care. 2018 Dec;29(3):374-384.
  • Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. Dialogues Clin Neurosci. 2018;20(4):301-325.
  • Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients. 2021;13(10):3530.
  • Huang C, Phillips MR, Zhang Y, Zhang J, Shi Q, Song Z, et al. Malnutrition in early life and adult mental health: evidence from a natural experiment. Soc Sci Med. 2013 Nov;97:259-66.
  • Pająk R, Mendela E, Będkowska N, Paprocka J. Update on Neuropathies in Inborn Errors of Metabolism. Brain Sci. 2021;11(6):763.
  • Ledri M, Sørensen AT, Kokaia M, Woldbye DPD, Gøtzsche CR. Editorial: Gene Therapy in the CNS - Progress and Prospects for Novel Therapies. Front Mol Neurosci. 2021 Oct 20;14:778134.
  • Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther. 2006 Jul;14(1):14-24.
  • Wei W, Wang Y, Liu Y, Dai CL, Tung YC, Liu F, et al. Prenatal to early postnatal neurotrophic treatment prevents Alzheimer-like behavior and pathology in mice. Alzheimers Res Ther. 2020 Aug 27;12(1):102.
  • Massaro G, Mattar CNZ, Wong AMS, Sirka E, Buckley SMK, Herbert BR, et al. Fetal gene therapy for neurodegenerative disease of infants. Nature medicine. 2018,24(9): 1317–1323.
  • Zhao Q, Dai W, Chen HY, Jacobs RE, Zlokovic BV, Lund BT, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113310119.
  • Blanche S. Mini review: Prevention of mother-child transmission of HIV: 25 years of continuous progress toward the eradication of pediatric AIDS?. Virulence. 2020;11(1):14-22.
Toplam 137 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toksikoloji
Bölüm Derlemeler
Yazarlar

Songül Ünüvar 0000-0001-8454-490X

Süleyman Sandal 0000-0002-8916-3329

Yayımlanma Tarihi 4 Mayıs 2025
Gönderilme Tarihi 14 Ocak 2025
Kabul Tarihi 11 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 1

Kaynak Göster

IEEE S. Ünüvar ve S. Sandal, “The Role of Environmental Pollutants in the Formation of Prenatal Neurodegeneration”, Etoxec, c. 5, sy. 1, ss. 11–32, 2025, doi: 10.59838/etoxec.1619749.