In this study, the possibilities of ranking or classifying countries, which are generally made using panel data analysis, are investigated using artificial intelligence models. For this, countries are classified in terms of unemployment, inflation, GDP Growth Rate, 5-year GDP Growth Rate, Foreign Direct Investment (FDI) Input and Job Freedom. Artificial Neural Networks (ANN), Support Vector Machines (SVM) and statistically Logistic Regression (LR) methods were used for classification. In the analyzes repeated ten times, LR (average 62.4%) gave the best result and SVM (2%) gave the lowest standard deviation.
The results obtained are promising for modern methods, but modern artificial intelligence methods, which have become an alternative to traditional methods in almost every field, are still behind traditional methods in this field. In order for modern methods to be an alternative to traditional methods in this regard, they need to further develop their theories (on matters such as the curse of dimension) or adapt the data structures used on the subject to these methods.
Country Classification Artificial Neural Network Support Vector Machines
Bu çalışmada genelde panel veri analizi kullanılarak yapılan ülkelerin kategorizasyonu çalışmalarının yapay zekâ modelleri kullanılarak yapılmasının imkanları araştırılmıştır. Yani yapay zekâ (AI) bu sahada istatiksel testlere göre daha iyi performans sağlıyor mu sorusunun cevabı araştırılmıştır. Bunun için ülkeler işsizlik, enflasyon, GSYİH Büyüme Hızı, 5 yıllık GSYİH Büyüme Hızı, Doğrudan Yabancı Yatırım (FDI) Girişi ve İş Özgürlüğü gibi ekonomik göstergeler kullanılarak sınıflandırılmıştır. Sınıflandırma için Yapay Sinir Ağları (ANN), Destek Vektör Makineleri (SVM) ve istatistiksel olarak da Lojistik Regresyon (LR) yöntemleri kullanılmıştır. Onar kez yinelenen analizlerde, en iyi sonucu veren LR (ortalama 62,4%), en küçük standart sapmayı veren SVM (2%) olmuştur.
Elde edilen sonuçların modern yöntemler için ümit vadettiği fakat geleneksel yöntemlerin bu konudaki alternatifsizliğinin bir süre daha devam edebileceği sonucuna varılmıştır. Modern yöntemlerin bu konuda geleneksel olanlarına alternatif olabilmesi için teorilerinin (boyut laneti gibi konularda) daha da geliştirilmesi ya da konuyla alakalı kullanılan veri yapılarının bu yöntemlere adaptasyonu gerekmektedir.
Ülke Sınıflandırması Yapay Sinir Ağları Destek Vektör Makineleri
| Birincil Dil | İngilizce |
|---|---|
| Konular | Uluslararası İktisat (Diğer) |
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Gönderilme Tarihi | 20 Ekim 2023 |
| Kabul Tarihi | 27 Kasım 2023 |
| Erken Görünüm Tarihi | 27 Aralık 2023 |
| Yayımlanma Tarihi | 30 Aralık 2023 |
| Yayımlandığı Sayı | Yıl 2023 Cilt: 1 Sayı: 1 |
Ekonomi, Yönetim, Politika dergisindeki tüm içerikler Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY 4.0) ile lisanslanmıştır.