Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Cytotoxic Effect of Bisphenol A and Its Analogs in MCF-7 and HSeC Cell Lines in vitro

Yıl 2022, Cilt: 1 Sayı: 47, 13 - 22, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078759

Öz

Endocrine-disrupting chemicals like bisphenol A (BPA) and its analogs have negative effects on human health. This research aims to determine the cytotoxic effects of BPA and its four different analogs bisphenol S (BPS), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AF (BPAF) on both cancer and healthy cell lines simultaneously by performing an MTT test. In this study, human breast cancer cells (MCF-7) and human Sertoli cells (HSeC) were used for cell culture. MCF-7 and HSeC were exposed to BPA, BPS, BPF, BPZ, BPAF for 24 h. After that, the inhibitory effect of Bisphenols (IC50) was determined by measuring the absorbance. While BPF was the least cytotoxic alternative depending on the highest IC50 values in both cell lines, BPZ was found to be the most cytotoxic alternative in HSeC cell line. In the MCF-7 cell line, BPA and BPZ were found to have equally cytotoxic effects.

Kaynakça

  • Aghajanpour-Mir, S. M., Zabihi, E., Akhavan-Niaki, H., Keyhani, E., Bagherizadeh, I., Biglari, S., Behjati, F. (2016). The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. International Journal of Molecular and Cellular Medicine, 5(1), 19. doi: 10.22088/acadpub. BUMS.5.1.19
  • Aris, A. (2014). Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reproductive Toxicology, 45, 8-13. doi: 10.1016/j.reprotox.2013.12.006
  • Audebert, M., Dolo, L., Perdu, E., Cravedi, J. P., Zalko, D. (2011). Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Archives of Toxicology, 85(11), 1463-1473. doi: 10.1007/s00204-011-0721-2
  • Bhatnagar, A., & Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere, 168, 885-902. doi: 10.1016/j.chemosphere.2016.10.121
  • Chen, M., Fan, Z., Zhao, F., Gao, F., Mu, D., Zhou, Y., Shen, H., Hu, J. (2016). Occurrence and maternal transfer of chlorinated bisphenol A and nonylphenol in pregnant women and their matching embryos. Environmental Science & Technology, 50(2), 970-977. doi: 10.1021/acs.est.5b04130
  • Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160(2), 171-177. doi: 10.1016/j.toxlet.2005.07.001
  • Geens, T., Neels, H., Covaci, A. (2012). Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere, 87(7), 796-802. doi:10.1016/j.chemosphere.2012.01.002
  • George, V. C., & Rupasinghe, H. V. (2018). DNA damaging and apoptotic potentials of Bisphenol A and Bisphenol S in human bronchial epithelial cells. Environmental Toxicology and Pharmacology, 60, 52-57. doi: 10.1016/j.etap.2018.04.009
  • Gerona, R. R., Woodruff, T. J., Dickenson, C. A., Pan, J., Schwartz, J. M., Sen, S., Friesen, M. W., Fujimoto, V. Y., Hunt, P. A. (2013). Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environmental Science & Technology, 47(21), 12477-12485. doi: 10.1021/es402764d
  • Hercog, K., Štern, A., Maisanaba, S., Filipič, M., Žegura, B. (2020). Plastics in cyanobacterial blooms genotoxic effects of binary mixtures of cylindrospermopsin and bisphenols in HepG2 cells. Toxins, 12(4), 219. doi: 10.3390/toxins12040219
  • Hernández-Hernández, K. L., Tapia-Orozco, N., Gimeno, M., Espinosa-García, A. M., García-García, J. A., Araiza-Olivera, D., Sánchez-Bartez, F., Gracia- Mora, I., Gutierrez-Aguilar, M., García-Arrazola, R. (2019). Exposure to bisphenol A: current levels from food intake are toxic to human cells. Molecular Biology Reports, 46(2), 2555-2559. doi:10.1007/s11033-019-04666-1
  • Ikhlas, S., Usman, A., Ahmad, M. (2019). In vitro study to evaluate the cytotoxicity of BPA analogues based on their oxidative and genotoxic potential using human peripheral blood cells. Toxicology in vitro, 60, 229-236. doi: 10.1016/j.tiv.2019.06.001
  • Kim, K. Y., Lee, E., Kim, Y. (2019). The association between bisphenol A exposure and obesity in children a systematic review with meta-analysis. Journal of Environmental Research and Public Health, 16(14), 2521. doi: 10.3390/ijerph16142521
  • Kose, O., Rachidi, W., Beal, D., Erkekoglu, P., Fayyad‐Kazan, H., Kocer Gumusel, B. (2020). The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE‐1 cells: A comparative study. Journal of Applied Toxicology, 40(5), 643-654. doi: 10.1002/jat.3934
  • Kovačič, A., Gys, C., Kosjek, T., Covaci, A., Heath, E. (2019). Photochemical degradation of BPF, BPS and BPZ in aqueous solution: Identification of transformation products and degradation kinetics. Science of The Total Environment, 664, 595-604. doi: 10.1016/j.scitotenv.2019.02.064
  • Lee, S., Kim, C., Shin, H., Kho, Y., Choi, K. (2019). Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere, 221, 115-123. doi:10.1016/j.chemosphere.2019.01.019
  • Lee, S., Kim, Y. K., Shin, T. Y., Kim, S. H. (2013). Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurotoxicity research, 23(3), 249-259. doi: 10.1007/s12640-012-9353-4
  • Lei, B., Xu, J., Peng, W., Wen, Y., Zeng, X., Yu, Z., Wang, Y., Chen, T. (2017). In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF‐7 cells and two‐hybrid yeast bioassay. Environmental toxicology, 32(1), 278-289. doi: 10.1002/tox.22234
  • Moreman, J., Lee, O., Trznadel, M., David, A., Kudoh, T., Tyler, C. R. (2017). Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environmental science technology, 51(21), 12796-12805. doi: 10.1021/acs.est.7b03283
  • Mu, X., Huang, Y., Li, X., Lei, Y., Teng, M., Li, X., Wang, C., Li, Y. (2018). Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model. Environmental science technology, 52(5), 3222-3231. doi: 10.1021/acs.est.7b06255
  • Mu, X., Liu, J., Yuan, L., Yang, K., Huang, Y., Wang, C., Yang, W., Shen, G., Li, Y. (2019). The mechanisms underlying the developmental effects of bisphenolF on zebrafish. Science of the Total Environment, 687, 877-884. doi: 10.1016/j.scitotenv.2019.05.489
  • Muñoz-de-Toro, M., Markey, C. M., Wadia, P. R., Luque, E. H., Rubin, B. S., Sonnenschein, C., Soto, A. M. (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology, 146(9), 4138-4147. doi:10.1210/en.2005-0340
  • Murata, M., & Kang, J. H. (2018). Bisphenol A(BPA) and cell signaling pathways. Biotechnology Advances, 36(1), 311-327. doi: 10.1016/j.biotechadv.2017.12.002
  • Nakamura, D., Yanagiba, Y., Duan, Z., Ito, Y., Okamura,A., Asaeda, N., Tagawa, Y., Li, C., Taya, K., Zhang, S., Naito, H., Ramdhan, D. H., Kamijima, M., Nakajima, T. (2010). Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicology Letters, 194(1-2), 16-25. doi: 10.1016/j.toxlet.2010.02.002
  • Neri, M., Virzì, G. M., Brocca, A., Garzotto, F., Kim, J. C., Ramponi, F., de Cal, M., Lorenzin, A., Brendolan, A., Nalesso, F., Zanella, M., Ronco, C. (2015). In vitro cytotoxicity of bisphenol A in monocytes cell line. Blood Purification, 40(2), 180-186. doi: 10.1159/000437039
  • Prokop, Z., Hanková, L., Jeřábek, K. (2004). Bisphenol A synthesis–modeling of industrial reactor and catalyst deactivation. Reactive and Functional Polymers, 60, 77-83. doi:10.1016/j.reactfunctpolym.2004.02.013
  • Qiu, W., Yang, M., Liu, S., Lei, P., Hu, L., Chen, B., Wu, M., Wang, K. J. (2018). Toxic effects of bisphenolS showing immunomodulation in fish macrophages. Environmental Science & Technology, 52(2), 831-838. doi: 10.1021/acs.est.7b04226
  • Qiu, W., Zhan, H., Tian, Y., Zhang, T., He, X., Luo, S., Xu, H., Zheng, C. (2018). The in vivo action of chronic bisphenol F showing potential immune disturbance in juvenile common carp (Cyprinus carpio). Chemosphere, 205, 506-513. doi: 10.1016/j.chemosphere.2018.04.105
  • Rahmani, S., Vakhshiteh, F., Hodjat, M., Sahranavardfard, P., Hassani, S., Ghafour Broujerdi, E., Rahimifard, M., Gholami, M., Baeeri, M., Abdollahi, M. (2020). Gene–Environmental Interplay in Bisphenol A Subchronic Animal Exposure: New Insights into the Epigenetic Regulation of Pancreatic Islets. Chemical Research in Toxicology, 33(9), 2338-2350. doi:10.1021/acs.chemrestox.0c00109
  • Russo, G., Capuozzo, A., Barbato, F., Irace, C., Santamaria, R., Grumetto, L. (2018). Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. Chemosphere, 201, 432-440. doi: 10.1016/j.chemosphere.2018.03.014
  • Schmidt, J., Kotnik, P., Trontelj, J., Knez, Ž., Mašič, L. P. (2013). Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicology in vitro, 27(4), 1267-1276. doi: 10.1016/j.tiv.2013.02.016
  • Sharin, T., Williams, K. L., Chiu, S., Crump, D., O’Brien, J. M. (2021). Toxicity Screening of BisphenolA Replacement Compounds: Cytotoxicity and mRNA Expression in Primary Hepatocytes of Chicken and Double‐Crested Cormorant. Environmental Toxicology and Chemistry, 40(5), 1368-1378. doi: 10.1002/etc.4985
  • Urriola‐Muñoz, P., Li, X., Maretzky, T., McIlwain, D.R., Mak, T. W., Reyes, J. G., Blobel, C. P., Moreno, R. D. (2018). The xenoestrogens biphenol‐A and nonylphenol differentially regulate metalloprotease‐ mediated shedding of EGFR ligands. Journal of Cellular Physiology, 233(3), 2247-2256. doi:10.1002/jcp.26097
  • Wang, Q., Bai, J., Ning, B., Fan, L., Sun, T., Fang, Y., Wu, J., Li, S., Duan, C., Zhang, Y., Liang, J., Gao, Z. (2020). Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere, 254, 126788. doi: 10.1016/j.chemosphere.2020.126788
  • Wu, L. H., Zhang, X. M., Wang, F., Gao, C. J., Chen, D., Palumbo, J. R., Guo, Y., Zeng, E. Y. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Science of the Total Environment, 615, 87-98. doi:10.1016/j.scitotenv.2017.09.194
  • Xiao, C., Wang, L., Zhou, Q., Huang, X. (2020). Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. Journal of Hazardous Materials, 384, 121488. doi:10.1016/j.jhazmat.2019.121488
  • Yang, X., Liu, Y., Li, J., Chen, M., Peng, D., Liang, Y., Song, M., Jiang, G. (2016). Exposure to Bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish. Environmental Toxicology, 31(3), 285-294. doi: 10.1002/tox.22043
  • Zacharewski, T. (1998). Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays. Environmental Health Perspectives, 106(suppl 2), 577-582. doi:10.1289/ehp.98106577
  • Zemheri, F., Cevdet, U. Ğ. U. Z. (2018). Endokrin bozucu kimyasallar: Nonilfenol ve Bisfenol A. Marmara Fen Bilimleri Dergisi, 30(1), 71-76.doi:10.7240/marufbd.337686

Bisfenol A ve Analoglarının MCF-7 ve HSeC Hücre Hatlarında in vitro Sitotoksik Etkisinin Değerlendirilmesi

Yıl 2022, Cilt: 1 Sayı: 47, 13 - 22, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078759

Öz

Bisfenol A (BPA) gibi endokrin bozucu kimyasallar ve benzerleri insan sağlığı üzerinde olumsuz etkilere sahiptir. Bu araştırma, BPA ve dört farklı analogunun bisphenol S (BPS), bisfenol F (BPF), bisfenol Z (BPZ), bisfenol AF (BPAF) hem kanser hem de sağlıklı hücre hatları üzerindeki sitotoksik etkilerini MTT testi yaparak aynı anda belirlemeyi amaçlamaktadır. Bu çalışmada, hücre kültürü için insan meme kanseri hücreleri (MCF-7) ve insan sertoli hücreleri (HSeC) kullanılmıştır. MCF-7 ve HSeC, 24 saat BPA, BPS, BPF, BPZ, BPAF’ye maruz bırakılmıştır. Daha sonra, bisfenollerin (IC50) inhibitör etkisi absorbans ölçümü ile belirlenmiştir. En yüksek IC50 değerleri nedeniyle her iki hücre hattında BPF en az sitotoksik alternatif iken, BPZ’nin HSeC hücre hattında en sitotoksik alternatif olduğu bulunmuştur. MCF-7 hücre hattında, BPA ve BPZ’nin eşit sitotoksik etkilere sahip olduğu bulunmuştur.

Kaynakça

  • Aghajanpour-Mir, S. M., Zabihi, E., Akhavan-Niaki, H., Keyhani, E., Bagherizadeh, I., Biglari, S., Behjati, F. (2016). The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. International Journal of Molecular and Cellular Medicine, 5(1), 19. doi: 10.22088/acadpub. BUMS.5.1.19
  • Aris, A. (2014). Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reproductive Toxicology, 45, 8-13. doi: 10.1016/j.reprotox.2013.12.006
  • Audebert, M., Dolo, L., Perdu, E., Cravedi, J. P., Zalko, D. (2011). Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Archives of Toxicology, 85(11), 1463-1473. doi: 10.1007/s00204-011-0721-2
  • Bhatnagar, A., & Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere, 168, 885-902. doi: 10.1016/j.chemosphere.2016.10.121
  • Chen, M., Fan, Z., Zhao, F., Gao, F., Mu, D., Zhou, Y., Shen, H., Hu, J. (2016). Occurrence and maternal transfer of chlorinated bisphenol A and nonylphenol in pregnant women and their matching embryos. Environmental Science & Technology, 50(2), 970-977. doi: 10.1021/acs.est.5b04130
  • Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160(2), 171-177. doi: 10.1016/j.toxlet.2005.07.001
  • Geens, T., Neels, H., Covaci, A. (2012). Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere, 87(7), 796-802. doi:10.1016/j.chemosphere.2012.01.002
  • George, V. C., & Rupasinghe, H. V. (2018). DNA damaging and apoptotic potentials of Bisphenol A and Bisphenol S in human bronchial epithelial cells. Environmental Toxicology and Pharmacology, 60, 52-57. doi: 10.1016/j.etap.2018.04.009
  • Gerona, R. R., Woodruff, T. J., Dickenson, C. A., Pan, J., Schwartz, J. M., Sen, S., Friesen, M. W., Fujimoto, V. Y., Hunt, P. A. (2013). Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environmental Science & Technology, 47(21), 12477-12485. doi: 10.1021/es402764d
  • Hercog, K., Štern, A., Maisanaba, S., Filipič, M., Žegura, B. (2020). Plastics in cyanobacterial blooms genotoxic effects of binary mixtures of cylindrospermopsin and bisphenols in HepG2 cells. Toxins, 12(4), 219. doi: 10.3390/toxins12040219
  • Hernández-Hernández, K. L., Tapia-Orozco, N., Gimeno, M., Espinosa-García, A. M., García-García, J. A., Araiza-Olivera, D., Sánchez-Bartez, F., Gracia- Mora, I., Gutierrez-Aguilar, M., García-Arrazola, R. (2019). Exposure to bisphenol A: current levels from food intake are toxic to human cells. Molecular Biology Reports, 46(2), 2555-2559. doi:10.1007/s11033-019-04666-1
  • Ikhlas, S., Usman, A., Ahmad, M. (2019). In vitro study to evaluate the cytotoxicity of BPA analogues based on their oxidative and genotoxic potential using human peripheral blood cells. Toxicology in vitro, 60, 229-236. doi: 10.1016/j.tiv.2019.06.001
  • Kim, K. Y., Lee, E., Kim, Y. (2019). The association between bisphenol A exposure and obesity in children a systematic review with meta-analysis. Journal of Environmental Research and Public Health, 16(14), 2521. doi: 10.3390/ijerph16142521
  • Kose, O., Rachidi, W., Beal, D., Erkekoglu, P., Fayyad‐Kazan, H., Kocer Gumusel, B. (2020). The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE‐1 cells: A comparative study. Journal of Applied Toxicology, 40(5), 643-654. doi: 10.1002/jat.3934
  • Kovačič, A., Gys, C., Kosjek, T., Covaci, A., Heath, E. (2019). Photochemical degradation of BPF, BPS and BPZ in aqueous solution: Identification of transformation products and degradation kinetics. Science of The Total Environment, 664, 595-604. doi: 10.1016/j.scitotenv.2019.02.064
  • Lee, S., Kim, C., Shin, H., Kho, Y., Choi, K. (2019). Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere, 221, 115-123. doi:10.1016/j.chemosphere.2019.01.019
  • Lee, S., Kim, Y. K., Shin, T. Y., Kim, S. H. (2013). Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurotoxicity research, 23(3), 249-259. doi: 10.1007/s12640-012-9353-4
  • Lei, B., Xu, J., Peng, W., Wen, Y., Zeng, X., Yu, Z., Wang, Y., Chen, T. (2017). In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF‐7 cells and two‐hybrid yeast bioassay. Environmental toxicology, 32(1), 278-289. doi: 10.1002/tox.22234
  • Moreman, J., Lee, O., Trznadel, M., David, A., Kudoh, T., Tyler, C. R. (2017). Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environmental science technology, 51(21), 12796-12805. doi: 10.1021/acs.est.7b03283
  • Mu, X., Huang, Y., Li, X., Lei, Y., Teng, M., Li, X., Wang, C., Li, Y. (2018). Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model. Environmental science technology, 52(5), 3222-3231. doi: 10.1021/acs.est.7b06255
  • Mu, X., Liu, J., Yuan, L., Yang, K., Huang, Y., Wang, C., Yang, W., Shen, G., Li, Y. (2019). The mechanisms underlying the developmental effects of bisphenolF on zebrafish. Science of the Total Environment, 687, 877-884. doi: 10.1016/j.scitotenv.2019.05.489
  • Muñoz-de-Toro, M., Markey, C. M., Wadia, P. R., Luque, E. H., Rubin, B. S., Sonnenschein, C., Soto, A. M. (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology, 146(9), 4138-4147. doi:10.1210/en.2005-0340
  • Murata, M., & Kang, J. H. (2018). Bisphenol A(BPA) and cell signaling pathways. Biotechnology Advances, 36(1), 311-327. doi: 10.1016/j.biotechadv.2017.12.002
  • Nakamura, D., Yanagiba, Y., Duan, Z., Ito, Y., Okamura,A., Asaeda, N., Tagawa, Y., Li, C., Taya, K., Zhang, S., Naito, H., Ramdhan, D. H., Kamijima, M., Nakajima, T. (2010). Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicology Letters, 194(1-2), 16-25. doi: 10.1016/j.toxlet.2010.02.002
  • Neri, M., Virzì, G. M., Brocca, A., Garzotto, F., Kim, J. C., Ramponi, F., de Cal, M., Lorenzin, A., Brendolan, A., Nalesso, F., Zanella, M., Ronco, C. (2015). In vitro cytotoxicity of bisphenol A in monocytes cell line. Blood Purification, 40(2), 180-186. doi: 10.1159/000437039
  • Prokop, Z., Hanková, L., Jeřábek, K. (2004). Bisphenol A synthesis–modeling of industrial reactor and catalyst deactivation. Reactive and Functional Polymers, 60, 77-83. doi:10.1016/j.reactfunctpolym.2004.02.013
  • Qiu, W., Yang, M., Liu, S., Lei, P., Hu, L., Chen, B., Wu, M., Wang, K. J. (2018). Toxic effects of bisphenolS showing immunomodulation in fish macrophages. Environmental Science & Technology, 52(2), 831-838. doi: 10.1021/acs.est.7b04226
  • Qiu, W., Zhan, H., Tian, Y., Zhang, T., He, X., Luo, S., Xu, H., Zheng, C. (2018). The in vivo action of chronic bisphenol F showing potential immune disturbance in juvenile common carp (Cyprinus carpio). Chemosphere, 205, 506-513. doi: 10.1016/j.chemosphere.2018.04.105
  • Rahmani, S., Vakhshiteh, F., Hodjat, M., Sahranavardfard, P., Hassani, S., Ghafour Broujerdi, E., Rahimifard, M., Gholami, M., Baeeri, M., Abdollahi, M. (2020). Gene–Environmental Interplay in Bisphenol A Subchronic Animal Exposure: New Insights into the Epigenetic Regulation of Pancreatic Islets. Chemical Research in Toxicology, 33(9), 2338-2350. doi:10.1021/acs.chemrestox.0c00109
  • Russo, G., Capuozzo, A., Barbato, F., Irace, C., Santamaria, R., Grumetto, L. (2018). Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. Chemosphere, 201, 432-440. doi: 10.1016/j.chemosphere.2018.03.014
  • Schmidt, J., Kotnik, P., Trontelj, J., Knez, Ž., Mašič, L. P. (2013). Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicology in vitro, 27(4), 1267-1276. doi: 10.1016/j.tiv.2013.02.016
  • Sharin, T., Williams, K. L., Chiu, S., Crump, D., O’Brien, J. M. (2021). Toxicity Screening of BisphenolA Replacement Compounds: Cytotoxicity and mRNA Expression in Primary Hepatocytes of Chicken and Double‐Crested Cormorant. Environmental Toxicology and Chemistry, 40(5), 1368-1378. doi: 10.1002/etc.4985
  • Urriola‐Muñoz, P., Li, X., Maretzky, T., McIlwain, D.R., Mak, T. W., Reyes, J. G., Blobel, C. P., Moreno, R. D. (2018). The xenoestrogens biphenol‐A and nonylphenol differentially regulate metalloprotease‐ mediated shedding of EGFR ligands. Journal of Cellular Physiology, 233(3), 2247-2256. doi:10.1002/jcp.26097
  • Wang, Q., Bai, J., Ning, B., Fan, L., Sun, T., Fang, Y., Wu, J., Li, S., Duan, C., Zhang, Y., Liang, J., Gao, Z. (2020). Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere, 254, 126788. doi: 10.1016/j.chemosphere.2020.126788
  • Wu, L. H., Zhang, X. M., Wang, F., Gao, C. J., Chen, D., Palumbo, J. R., Guo, Y., Zeng, E. Y. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Science of the Total Environment, 615, 87-98. doi:10.1016/j.scitotenv.2017.09.194
  • Xiao, C., Wang, L., Zhou, Q., Huang, X. (2020). Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. Journal of Hazardous Materials, 384, 121488. doi:10.1016/j.jhazmat.2019.121488
  • Yang, X., Liu, Y., Li, J., Chen, M., Peng, D., Liang, Y., Song, M., Jiang, G. (2016). Exposure to Bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish. Environmental Toxicology, 31(3), 285-294. doi: 10.1002/tox.22043
  • Zacharewski, T. (1998). Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays. Environmental Health Perspectives, 106(suppl 2), 577-582. doi:10.1289/ehp.98106577
  • Zemheri, F., Cevdet, U. Ğ. U. Z. (2018). Endokrin bozucu kimyasallar: Nonilfenol ve Bisfenol A. Marmara Fen Bilimleri Dergisi, 30(1), 71-76.doi:10.7240/marufbd.337686
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Seda İpek Bu kişi benim

İrem İyigündoğdu Bu kişi benim

Aylin Üstündağ

Yalçın Duydu Bu kişi benim

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 24 Şubat 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 47

Kaynak Göster

APA İpek, S., İyigündoğdu, İ., Üstündağ, A., Duydu, Y. (2022). Evaluation of the Cytotoxic Effect of Bisphenol A and Its Analogs in MCF-7 and HSeC Cell Lines in vitro. Fabad Eczacılık Bilimler Dergisi, 1(47), 13-22. https://doi.org/10.55262/fabadeczacilik.1078759