Araştırma Makalesi
BibTex RIS Kaynak Göster

Modified Drug Release from SiO2/Polyhydroxybutyrate Composite Prepared Using Bamboo Leaf-Derived Silica

Yıl 2022, Cilt: 1 Sayı: 47, 23 - 34, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078768

Öz

The ability of a controlled or modified drug delivery system to supply the drug in a sustained way and assure on-demand bioavailability makes it preferable to traditional drug administration. Due to the reliance on alkoxysilane silica precursors, the preparation of silica/ polymer composite delivery material is costly. As a result, this study looked into using the bamboo leaf as a silica starting material. To evaluate in vitro degradability and modified-release in phosphate buffered saline (PBS) solution, the ash from the bamboo leaf was
mixed with polyhydroxy butyrate (PHB) solution to make a (SiO2/PHB) composite, which was then loaded with the medication, tetracycline hydrochloride (TCH). The shape, phase composition, and chemical bond characteristics of the materials were evaluated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy. An ultraviolet (UV) spectrophotometer was used to determine the TCH release profile. The SiO2/PHB composite was found to have a successful drug loading ability. In addition to regulated degradability in PBS, the composite exhibited a steady and sustained TCH release, with the degradation solution pH remaining below safe limits. As a result, the formulation of SiO2/PHB for continuous TCH delivery from bamboo leaf-derived silica suggests a significant potential economic benefit for a safe, regulated drug delivery method.

Kaynakça

  • Adams, L. A., Essien, E. R., Adesalu, A. T., & Julius, M. L. (2017). Bioactive glass 45S5 from diatom biosilica. Journal of Science: Advanced Materials and Devices, 2(4), 476–482. https://doi.org/10.1016/j.jsamd.2017.09.002
  • Aminullah, Rohaeti, E., & Irzaman. (2015). Reduction of high purity silicon from bamboo leaf as basic material in development of sensors manufacture in satellite technology. Procedia Environmental Sciences, 24, 308–316. https://doi.org/10.1016/j.proenv.2015.03.040
  • Anselmo, A. C., & Mitragotri, S. (2014). An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 190, 15–28. https://doi.org/10.1016/j.jconrel.2014.03.053
  • Arumugam, A., Karuppasamy, G., & Jegadeesan, G.B. (2018). Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil. Materials Letters, 225, 113–116. https://doi.org/10.1016/j.matlet.2018.04.122
  • Basu, S., & Adhiyaman, R. (2008). Preparation and Characterization of Nitrendipine-loaded Eudragit RL 100 microspheres prepared by an emulsion-solvent evaporation method. Tropical Journal of Pharmaceutical Research, 7(3). https://doi.org/10.4314/tjpr.v7i3.14688
  • Bitar, A., Ahmad, N. M., Fessi, H., & Elaissari, A.(2012). Silica-based nanoparticles for biomedical applications. Drug Discovery Today, 17(19–20), 1147–1154. https://doi.org/10.1016/j.drudis. 2012.06.014
  • Blanchard, F. N. (1989). The space group and reference powder diffraction data for tetracycline hydrochloride, C22H24N2O8HCl. Powder Diffraction, 4(2), 103–105.
  • Caminati, G., Focardi, C., Gabrielli, G., Gambinossi, F., Mecheri, B., Nocentini, M., & Puggelli, M. (2002). Spectroscopic investigation of tetracycline interaction with phospholipid Langmuir–Blodgett films. Materials Science and Engineering: C, 22(2), 301–305. https://doi.org/10.1016/s0928-4931(02)00217-5
  • Chou, S. F., & Woodrow, K. A. (2017). Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. Journal of the Mechanical Behavior of Biomedical Materials, 65, 724–733. https://doi.org/10.1016/j.jmbbm.2016.09.004
  • Dwivedi, V. N., Singh, N. P., Das, S. S., & Singh, N.B. (2006). A new pozzolanic material for cement industry: bamboo leaf ash. International Journal Physical Sciences, 1(3), 106-111.
  • Essien, E. R., Adams, L. A., Shaibu, R. O., Olasupo, I. A., & Oki, A. (2012). Economic route to sodium-containing silicate bioactive glass scaffold. Open Journal of Regenerative Medicine, 01(03), 33–40. https://doi.org/10.4236/ojrm.2012.13006
  • Fernández-Colino, A., Bermudez, J., Arias, F., Quinteros, D., & Gonzo, E. (2016). Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide- controlled release from a bio-inspired elastin- based hydrogel. Materials Science and Engineering: C, 61, 286–292. https://doi.org/10.1016/j. msec.2015.12.050
  • Freier, T., Kunze, C., Nischan, C., Kramer, S., Sternberg, K., Saß, M., . . . Schmitz, K. P. (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13), 2649–2657. https://doi.org/10.1016/s0142-9612(01)00405-7 Fruijtier-Poelloth, C. (2012). The toxicological mode of action and the safety of synthetic amorphous silica - A nanostructured material. Toxicology, 294(2-3), 61–79. https://doi.org/10.1016/j.tox.2012.02.001
  • Hao, R., Yan, Z., Huamin, Z., Jinxiang, C. (2015). Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic Acid reinforced with short and long pulp fibers. Cellulose Chemical Technology, 49(7-8), 641–652.
  • Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355–363. https://doi.org/10.1016/j.tiv.2015.09.030
  • Kierys, A., Zaleski, R., Grochowicz, M., Gorgol, M.,& Sienkiewicz, A. (2020). Polymer–mesoporous silica composites for drug release systems. Microporous and Mesoporous Materials, 294, 109881. https://doi.org/10.1016/j.micromeso.2019.109881
  • Liu, X., Ding, C., & Chu, P. K. (2004). Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials, 25(10), 1755–1761. https://doi.org/10.1016/j.biomaterials.2003.08.024
  • Luo, W., Geng, Z., Li, Z., Wu, S., Cui, Z., Zhu, S., ...Yang, X. (2018). Controlled and sustained drug release performance of calcium sulfate cement porous TiO2 microsphere composites. International Journal of Nanomedicine, Volume 13, 7491–7501. https://doi.org/10.2147/ijn.s177784
  • Mohapatra, S., Sakthivel, R., Roy, G. S., Varma, S., Singh, S. K., & Mishra, D. K. (2011). Synthesis of β-SiC powder from bamboo leaf in a DC extended thermal plasma reactor. Materials and Manufacturing Processes, 26(11), 1362–1368. https://doi.org/10.1080/10426914.2011.557127
  • Mohseni, M., Gilani, K., & Mortazavi, SA. (2015). Preparation and characterization of Rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iranian Journal Pharmaceutical Research, 14(1), 27-34. PMID: 25561909; PMCID: PMC4277616.
  • Nakashima, H., Omae, K., Takebayashi, T., Ishizuka, C., & Uemura, T. (1998). Toxicity of silicon compounds in semiconductor industries. Journal of Occupational Health, 40(4), 270–275. https://doi.org/10.1539/joh.40.270
  • Pang, Q., & Nazar, L. F. (2016). Long-life and high-areal-capacity Li–S batteries enabled by a lightweight polar host with intrinsic polysulfide adsorption. ACS Nano, 10(4), 4111–4118. https://doi.org/10.1021/acsnano.5b07347
  • Parfenyuk, E. V., & Dolinina, E. S. (2014). Design of silica carrier for controlled release of molsidomine: Effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 1038–1045. https://doi.org/10.1016/j.ejpb.2014.09.007
  • Parfenyuk, E. V., & Dolinina, E. S. (2017). Development of novel warfarin-silica composite for controlled drug release. Pharmaceutical Research, 34(4), 825–835. https://doi.org/10.1007/s11095-017-2111-9
  • Peña, J., Corrales, T., Izquierdo-Barba, I., Doadrio, A. L., & Vallet-Regí, M. (2006). Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids. Polymer Degradation and Stability, 91(7), 1424–1432. https://doi.org/10.1016/j.polymdegradstab.2005.10.016
  • Ranjaraj, S., & Venkatachalam, R. (2017). A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Applied Nanoscience,7, 145-153. https://doi.org/10.1007/s13204-017-0557-z
  • Ren, H., Zhang Y., Zhai, H., & Chen, J. (2015). Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic acid reinforced with short and long pulp fibers. Cellulose Chemical Technology, 49(7-8), 641–652.
  • Renita, M, Halimatussa’diah, S, Ruri, R., & Syahputri, Z. (2019). Synthesis and characterization of K-silica catalyst based bamboo-leaves for transesterification reaction. AIP Conference Proceeding, 2085, 020069. https://doi.org/10.1063/1.5095047
  • Sakai-Kato, K., Hasegawa, T., Takaoka, A., Kato, M., Toyo’oka, T., Utsunomiya-Tate, N., & Kawanishi, T. (2011). Controlled structure and properties of silicate nanoparticle networks for incorporation of biosystem components. Nanotechnology, 22(20), 205702. https://doi.org/10.1088/0957-4484/22/20/205702
  • Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. https://doi.org/10.1038/ nrc.2016.108
  • Swornakumari, C., Meignanalakshmi, S., Legadevi, R.,& Palanisammi, A. (2018). Preparation of microspheres using poly-3-hydroxybutyrate biopolymer and its characterization. Journal of Environmental Biology, 39(3), 331-338. https://doi.org/10.22438/jeb/39/3/MRN-315
  • Thangadurai, S., Abraham, J. T., Srivastava, A. K., Nataraja Moorthy, M., Shukla, S. K., & Anjaneyulu, Y. (2005). X-Ray Powder Diffraction Patterns for Certain BETA.-Lactam, Tetracycline and Macrolide Antibiotic Drugs. Analytical Sciences, 21(7), 833–838. https://doi.org/10.2116/analsci.21.833
  • Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chemical Reviews, 99(11), 3181–3198. https://doi.org/10.1021/cr940351u
  • Wang, S., Liu, F., Zeng, Z., Yang, H., & Jiang, H. (2015). The protective effect of bafilomycin A1 against cobalt nanoparticle-induced cytotoxicity and aseptic inflammation in macrophages in vitro. Biological Trace Element Research, 169(1), 94–105. https://doi.org/10.1007/s12011-015-0381-9
  • Yu, L., Li, Y., Zhao, K., Tang, Y., Cheng, Z., Chen, J., . .. Wu, Z. (2013). A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS ONE, 8(4), e62570. https://doi.org/10.1371/journal.pone.0062570

Bambu Yaprağından Elde Edilen Silika Kullanılarak Hazırlanan SiO2/Polihidroksibutirat Kompozitten Modifiye İlaç Salımı

Yıl 2022, Cilt: 1 Sayı: 47, 23 - 34, 01.03.2022
https://doi.org/10.55262/fabadeczacilik.1078768

Öz

Kontrollü veya modifiye edilmiş ilaç salım sistemleri, ilacı sürekli vermesi ve istenilen biyoyararlanımı sağlaması nedeniyle konvansiyonel ilaç uygulama sistemlerine göre tercih edilmektedirler. Alkoksisilan silika prekürsörlerine bağlı olarak silika/polimer kompozitlerin taşıyıcı malzeme olarak üretilmeleri pahalıdır. Sonuç olarak, bu çalışma bambu yaprağını silika başlangıç malzemesi olarak kullanmayı amaçlamıştır. İn vitro bozunmayı ve modifiye edilmiş salımı fosfat tamponlu tuz çözeltisinde (PBS) değerlendirmek için, tetrasiklin hidroklorür (TCH) ile yüklenen bir (SiO2/PHB) kompozit yapmak için bambu yaprağından gelen kül, polihidroksibütirat (PHB) çözeltisi ile karıştırılmıştır. Malzemelerin şekli, faz bileşimi
ve kimyasal bağ özellikleri, taramalı elektron mikroskobu (SEM), X-ışını difraktometrisi (XRD) ve Fourier dönüşümü kızılötesi spektroskopisi kullanılarak değerlendirildi. TCH salınım profilini belirlemek için bir ultraviyole (UV) spektrofotometre kullanıldı. SiO2/PHB kompozitinin başarılı bir ilaç yükleme yeteneğine sahip olduğu bulundu. İlave olarak PBS’de düzenlenmiş bozunabilirliğe ek olarak, kompozitin, bozunma çözeltisi pH’ının güvenli sınırların altında kalmasıyla, TCH’yi sabit ve sürekli bir şekilde saldığı bulundu. Sonuç olarak, bambu yaprağından türetilen silikadan sürekli TCH salımı için Si02/PHB formülasyonu, güvenli, düzenlenmiş bir ilaç verme yöntemi olarak önemli bir potansiyel ekonomik fayda sağlayacaktır.

Kaynakça

  • Adams, L. A., Essien, E. R., Adesalu, A. T., & Julius, M. L. (2017). Bioactive glass 45S5 from diatom biosilica. Journal of Science: Advanced Materials and Devices, 2(4), 476–482. https://doi.org/10.1016/j.jsamd.2017.09.002
  • Aminullah, Rohaeti, E., & Irzaman. (2015). Reduction of high purity silicon from bamboo leaf as basic material in development of sensors manufacture in satellite technology. Procedia Environmental Sciences, 24, 308–316. https://doi.org/10.1016/j.proenv.2015.03.040
  • Anselmo, A. C., & Mitragotri, S. (2014). An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 190, 15–28. https://doi.org/10.1016/j.jconrel.2014.03.053
  • Arumugam, A., Karuppasamy, G., & Jegadeesan, G.B. (2018). Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil. Materials Letters, 225, 113–116. https://doi.org/10.1016/j.matlet.2018.04.122
  • Basu, S., & Adhiyaman, R. (2008). Preparation and Characterization of Nitrendipine-loaded Eudragit RL 100 microspheres prepared by an emulsion-solvent evaporation method. Tropical Journal of Pharmaceutical Research, 7(3). https://doi.org/10.4314/tjpr.v7i3.14688
  • Bitar, A., Ahmad, N. M., Fessi, H., & Elaissari, A.(2012). Silica-based nanoparticles for biomedical applications. Drug Discovery Today, 17(19–20), 1147–1154. https://doi.org/10.1016/j.drudis. 2012.06.014
  • Blanchard, F. N. (1989). The space group and reference powder diffraction data for tetracycline hydrochloride, C22H24N2O8HCl. Powder Diffraction, 4(2), 103–105.
  • Caminati, G., Focardi, C., Gabrielli, G., Gambinossi, F., Mecheri, B., Nocentini, M., & Puggelli, M. (2002). Spectroscopic investigation of tetracycline interaction with phospholipid Langmuir–Blodgett films. Materials Science and Engineering: C, 22(2), 301–305. https://doi.org/10.1016/s0928-4931(02)00217-5
  • Chou, S. F., & Woodrow, K. A. (2017). Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. Journal of the Mechanical Behavior of Biomedical Materials, 65, 724–733. https://doi.org/10.1016/j.jmbbm.2016.09.004
  • Dwivedi, V. N., Singh, N. P., Das, S. S., & Singh, N.B. (2006). A new pozzolanic material for cement industry: bamboo leaf ash. International Journal Physical Sciences, 1(3), 106-111.
  • Essien, E. R., Adams, L. A., Shaibu, R. O., Olasupo, I. A., & Oki, A. (2012). Economic route to sodium-containing silicate bioactive glass scaffold. Open Journal of Regenerative Medicine, 01(03), 33–40. https://doi.org/10.4236/ojrm.2012.13006
  • Fernández-Colino, A., Bermudez, J., Arias, F., Quinteros, D., & Gonzo, E. (2016). Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide- controlled release from a bio-inspired elastin- based hydrogel. Materials Science and Engineering: C, 61, 286–292. https://doi.org/10.1016/j. msec.2015.12.050
  • Freier, T., Kunze, C., Nischan, C., Kramer, S., Sternberg, K., Saß, M., . . . Schmitz, K. P. (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13), 2649–2657. https://doi.org/10.1016/s0142-9612(01)00405-7 Fruijtier-Poelloth, C. (2012). The toxicological mode of action and the safety of synthetic amorphous silica - A nanostructured material. Toxicology, 294(2-3), 61–79. https://doi.org/10.1016/j.tox.2012.02.001
  • Hao, R., Yan, Z., Huamin, Z., Jinxiang, C. (2015). Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic Acid reinforced with short and long pulp fibers. Cellulose Chemical Technology, 49(7-8), 641–652.
  • Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355–363. https://doi.org/10.1016/j.tiv.2015.09.030
  • Kierys, A., Zaleski, R., Grochowicz, M., Gorgol, M.,& Sienkiewicz, A. (2020). Polymer–mesoporous silica composites for drug release systems. Microporous and Mesoporous Materials, 294, 109881. https://doi.org/10.1016/j.micromeso.2019.109881
  • Liu, X., Ding, C., & Chu, P. K. (2004). Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials, 25(10), 1755–1761. https://doi.org/10.1016/j.biomaterials.2003.08.024
  • Luo, W., Geng, Z., Li, Z., Wu, S., Cui, Z., Zhu, S., ...Yang, X. (2018). Controlled and sustained drug release performance of calcium sulfate cement porous TiO2 microsphere composites. International Journal of Nanomedicine, Volume 13, 7491–7501. https://doi.org/10.2147/ijn.s177784
  • Mohapatra, S., Sakthivel, R., Roy, G. S., Varma, S., Singh, S. K., & Mishra, D. K. (2011). Synthesis of β-SiC powder from bamboo leaf in a DC extended thermal plasma reactor. Materials and Manufacturing Processes, 26(11), 1362–1368. https://doi.org/10.1080/10426914.2011.557127
  • Mohseni, M., Gilani, K., & Mortazavi, SA. (2015). Preparation and characterization of Rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iranian Journal Pharmaceutical Research, 14(1), 27-34. PMID: 25561909; PMCID: PMC4277616.
  • Nakashima, H., Omae, K., Takebayashi, T., Ishizuka, C., & Uemura, T. (1998). Toxicity of silicon compounds in semiconductor industries. Journal of Occupational Health, 40(4), 270–275. https://doi.org/10.1539/joh.40.270
  • Pang, Q., & Nazar, L. F. (2016). Long-life and high-areal-capacity Li–S batteries enabled by a lightweight polar host with intrinsic polysulfide adsorption. ACS Nano, 10(4), 4111–4118. https://doi.org/10.1021/acsnano.5b07347
  • Parfenyuk, E. V., & Dolinina, E. S. (2014). Design of silica carrier for controlled release of molsidomine: Effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 1038–1045. https://doi.org/10.1016/j.ejpb.2014.09.007
  • Parfenyuk, E. V., & Dolinina, E. S. (2017). Development of novel warfarin-silica composite for controlled drug release. Pharmaceutical Research, 34(4), 825–835. https://doi.org/10.1007/s11095-017-2111-9
  • Peña, J., Corrales, T., Izquierdo-Barba, I., Doadrio, A. L., & Vallet-Regí, M. (2006). Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids. Polymer Degradation and Stability, 91(7), 1424–1432. https://doi.org/10.1016/j.polymdegradstab.2005.10.016
  • Ranjaraj, S., & Venkatachalam, R. (2017). A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Applied Nanoscience,7, 145-153. https://doi.org/10.1007/s13204-017-0557-z
  • Ren, H., Zhang Y., Zhai, H., & Chen, J. (2015). Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic acid reinforced with short and long pulp fibers. Cellulose Chemical Technology, 49(7-8), 641–652.
  • Renita, M, Halimatussa’diah, S, Ruri, R., & Syahputri, Z. (2019). Synthesis and characterization of K-silica catalyst based bamboo-leaves for transesterification reaction. AIP Conference Proceeding, 2085, 020069. https://doi.org/10.1063/1.5095047
  • Sakai-Kato, K., Hasegawa, T., Takaoka, A., Kato, M., Toyo’oka, T., Utsunomiya-Tate, N., & Kawanishi, T. (2011). Controlled structure and properties of silicate nanoparticle networks for incorporation of biosystem components. Nanotechnology, 22(20), 205702. https://doi.org/10.1088/0957-4484/22/20/205702
  • Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. https://doi.org/10.1038/ nrc.2016.108
  • Swornakumari, C., Meignanalakshmi, S., Legadevi, R.,& Palanisammi, A. (2018). Preparation of microspheres using poly-3-hydroxybutyrate biopolymer and its characterization. Journal of Environmental Biology, 39(3), 331-338. https://doi.org/10.22438/jeb/39/3/MRN-315
  • Thangadurai, S., Abraham, J. T., Srivastava, A. K., Nataraja Moorthy, M., Shukla, S. K., & Anjaneyulu, Y. (2005). X-Ray Powder Diffraction Patterns for Certain BETA.-Lactam, Tetracycline and Macrolide Antibiotic Drugs. Analytical Sciences, 21(7), 833–838. https://doi.org/10.2116/analsci.21.833
  • Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chemical Reviews, 99(11), 3181–3198. https://doi.org/10.1021/cr940351u
  • Wang, S., Liu, F., Zeng, Z., Yang, H., & Jiang, H. (2015). The protective effect of bafilomycin A1 against cobalt nanoparticle-induced cytotoxicity and aseptic inflammation in macrophages in vitro. Biological Trace Element Research, 169(1), 94–105. https://doi.org/10.1007/s12011-015-0381-9
  • Yu, L., Li, Y., Zhao, K., Tang, Y., Cheng, Z., Chen, J., . .. Wu, Z. (2013). A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS ONE, 8(4), e62570. https://doi.org/10.1371/journal.pone.0062570
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Enobong R. Essıen Bu kişi benim

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 14 Haziran 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 47

Kaynak Göster

APA Essıen, E. R. (2022). Modified Drug Release from SiO2/Polyhydroxybutyrate Composite Prepared Using Bamboo Leaf-Derived Silica. Fabad Eczacılık Bilimler Dergisi, 1(47), 23-34. https://doi.org/10.55262/fabadeczacilik.1078768