Derleme
BibTex RIS Kaynak Göster

Aerobik Egzersizin Beyin Sağlığının Korunması ve Geliştirilmesi Üzerine Etkisi-Derleme Makalesi

Yıl 2023, , 101 - 113, 17.04.2023
https://doi.org/10.56061/fbujohs.1168312

Öz

Dünya genelinde yaşlanan nüfusun genel nüfusa oranının artması ile birlikte Alzheimer hastalığı gibi yaşla ilişkili nörodejeneratif hastalıkların daha sık ortaya çıktığı görülmektedir. Uzayan insan ömrü, beyin sağlığının korunmasının önemini artırmıştır. Beynin plastik bir yapı olduğu, yetişkinlik dönemi boyunca öğrenme, hafıza, dikkat gibi kognitif fonksiyonların belirli uygulamalarla geliştirilebileceği bilinmektedir. Fiziksel egzersiz, kognitif fonksiyonları geliştirmeye ve sürdürmeye yönelik stratejiler içerisinde, yan etkisinin bulunmaması, etkin maliyetli ve kolay ulaşılabilir olması gibi yönleriyle öne çıkmaktadır. Egzersizin özellikle aerobik formunun beyin sağlığı üzerine olumlu etkileri, birçok bilimsel çalışma ile gösterilmiştir. Araştırmacıların yoğunlukla üzerinde durduğu güncel sorulardan biri, egzersizin beynin yapı ve fonksiyonlarını hangi mekanizma ile etkilediğidir. Egzersizin beyin sağlığı üzerine pozitif etkilerinin, nörogenezis ile yeni nöron üretimi, anjiyogenezis ile serebral dolaşımın artması, kognitif fonksiyonlar ile ilişkili olduğu düşünülen beyin bölgelerindeki hacimsel artış, inflamasyonun baskılanması ve nörotrofin salgılanmasının uyarılması gibi fizyolojik mekanizmalar aracılığıyla gerçekleştiği düşünülmektedir. Bu derlemede, aerobik egzersizin kognitif fonksiyonları geliştirici etkisine dair mekanizmaların kısaca açıklanması hedeflenmiştir. Ayrıca aerobik egzersiz uygulaması ile sağlıklı kişilerde kognitif fonksiyonları geliştirmeyi amaçlayan bilimsel çalışmalara yer verilmiş, bu çalışmalarda uygulanmış olan egzersiz reçeteleri, nitelikleri bakımından incelenmiştir. Egzersizin beyin sağlığını hangi mekanizma ile etkilediğinin anlaşılması, kognitif sağlığı korumak üzere en iyi egzersiz reçetesinin ne şekilde hazırlanabileceğinin belirlenmesinde yol gösterici olabilir.

Destekleyen Kurum

Çalışmamız herhangi bir kurum tarafından desteklenmemiştir.

Proje Numarası

Çalışmamız herhangi bir proje kapsamında yapılmamıştır.

Teşekkür

-

Kaynakça

  • Barnes, D. E., Yaffe, K., Satariano, W. A., & Tager, I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. Journal of the American Geriatrics Society, 51(4), 459-465.
  • Barnes, J. N., Pearson, A. G., Corkery, A. T., Eisenmann, N. A., & Miller, K. B. (2021). Exercise, arterial stiffness, and cerebral vascular function: potential impact on brain health. Journal of the International Neuropsychological Society, 27(8), 761-775.
  • Bliss, E. S., Wong, R. H., Howe, P. R., & Mills, D. E. (2021). Benefits of exercise training on cerebrovascular and cognitive function in ageing. Journal of Cerebral Blood Flow & Metabolism, 41(3), 447-470.
  • Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., ... & Mann, J. J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell stem cell, 22(4), 589-599.
  • Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports medicine, 32(9), 555-566.
  • Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20(8), 2926-2933.
  • Castro, M. G., Venutolo, C., Yau, P. L., & Convit, A. (2016). Fitness, insulin sensitivity, and frontal lobe integrity in adults with overweight and obesity. Obesity, 24(6), 1283-1289.
  • Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., ... & Kramer, A. F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain research, 1358, 172-183.
  • Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose-response relation between exercise duration and cognition. Med. Sci. Sports Exerc, 47, 159-165.
  • Chapman, S. B., Aslan, S., Spence, J. S., DeFina, L. F., Keebler, M. W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in aging neuroscience, 5, 75.
  • Chen, C., Nakagawa, S., An, Y., Ito, K., Kitaichi, Y., & Kusumi, I. (2017). The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Frontiers in neuroendocrinology, 44, 83-102.
  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., ... & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
  • Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in neurosciences, 30(9), 464-472.
  • Cunha, C., Brambilla, R., & Thomas, K. L. (2010). A simple role for BDNF in learning and memory?. Frontiers in molecular neuroscience, 3, 1.
  • Gomes da Silva, S., Simões, P. S. R., Mortara, R. A., Scorza, F. A., Cavalheiro, E. A., da Graça Naffah-Mazzacoratti, M., & Arida, R. M. (2013). Exercise-induced hippocampal anti-inflammatory response in aged rats. Journal of neuroinflammation, 10(1), 1-6.,
  • den Heijer, T., van der Lijn, F., Vernooij, M. W., de Groot, M., Koudstaal, P. J., van der Lugt, A., ... & Breteler, M. M. (2012). Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage, 63(4), 1782-1789.
  • Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctot, K. L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PloS one, 11(9), e0163037.
  • During, M. J., & Cao, L. (2006). VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Current Alzheimer Research, 3(1), 29-33. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z., & Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences, 100(23), 13632-13637.
  • Elcombe, E. L., Lagopoulos, J., Mowszowski, L., Diamond, K., Paradise, M., Hickie, I. B., ... & Naismith, S. L. (2014). Clinical and cognitive correlates of structural hippocampal change in “at-risk” older adults. Journal of Geriatric Psychiatry and Neurology, 27(2), 67-76.
  • Elcombe, E. L., Lagopoulos, J., Duffy, S. L., Lewis, S. J., Norrie, L., Hickie, I. B., & Naismith, S. L. (2015). Hippocampal volume in older adults at risk of cognitive decline: the role of sleep, vascular risk, and depression. Journal of Alzheimer's Disease, 44(4), 1279-1290.
  • Elwood, P., Galante, J., Pickering, J., Palmer, S., Bayer, A., Ben-Shlomo, Y., ... & Gallacher, J. (2013). Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the Caerphilly cohort study. PloS one, 8(12), e81877.
  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., ... & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences, 108(7), 3017-3022.
  • Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: interactions between exercise, depression, and BDNF. The Neuroscientist, 18(1), 82-97.
  • Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain research reviews, 52(1), 119-130.
  • Evans, T. E., Adams, H. H., Licher, S., Wolters, F. J., van der Lugt, A., Ikram, M. K., ... & Ikram, M. A. (2018). Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia. Neuroimage, 178, 129-135.
  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., ... & Palmer, T. D. (2003). VEGF is necessary for exercise‐induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18(10), 2803-2812.
  • Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage, 166, 230-238.
  • Fotuhi, M., Do, D., & Jack, C. (2012). Modifiable factors that alter the size of the hippocampus with ageing. Nature Reviews Neurology, 8(4), 189-202. Gates, N., Singh, M. A. F., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. The American Journal of Geriatric Psychiatry, 21(11), 1086-1097.
  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 9(1), 58-65.
  • Huang, T., Larsen, K. T., Ried‐Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain‐derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports, 24(1), 1-10.
  • Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences, 99(18), 11946-11950.
  • Kennedy, G., Hardman, R. J., Macpherson, H., Scholey, A. B., & Pipingas, A. (2017). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer's Disease, 55(1), 1-18.
  • Kirk-Sanchez, N. J., & McGough, E. L. (2014). Physical exercise and cognitive performance in the elderly: current perspectives. Clinical interventions in aging, 9, 51.
  • Kisler, K., Nelson, A. R., Montagne, A., & Zlokovic, B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 18(7), 419-434.
  • Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: a meta-analytic study—revisited. Perspectives on Psychological Science, 13(2), 213-217.
  • Licht, T., Goshen, I., Avital, A., Kreisel, T., Zubedat, S., Eavri, R., ... & Keshet, E. (2011). Reversible modulations of neuronal plasticity by VEGF. Proceedings of the National Academy of Sciences, 108(12), 5081-5086.
  • Ma, C. L., Ma, X. T., Wang, J. J., Liu, H., Chen, Y. F., & Yang, Y. (2017). Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behavioural brain research, 317, 332-339.
  • Maass, A., Düzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., ... & Düzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular psychiatry, 20(5), 585-593.
  • McSween, M. P., Coombes, J. S., MacKay, C. P., Rodriguez, A. D., Erickson, K. I., Copland, D. A., & McMahon, K. L. (2019). The immediate effects of acute aerobic exercise on cognition in healthy older adults: a systematic review. Sports Medicine, 49(1), 67-82.
  • Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute aerobic exercise based cognitive and motor priming: practical applications and mechanisms. Frontiers in psychology, 10, 2790.
  • Morland, C., Andersson, K. A., Haugen, Ø. P., Hadzic, A., Kleppa, L., Gille, A., ... & Bergersen, L. H. (2017). Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature communications, 8(1), 1-9.
  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in neurobiology, 63(1), 71-124.
  • Nishijima, T., Torres-Aleman, I., & Soya, H. (2016). Exercise and cerebrovascular plasticity. Progress in brain research, 225, 243-268.
  • Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. The Lancet Neurology, 13(8), 788-794.
  • Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British journal of sports medicine, 52(3), 154-160.
  • O'Donnell, E., Vereker, E., & Lynch, M. A. (2000). Age‐related impairment in LTP is accompanied by enhanced activity of stress‐activated protein kinases: analysis of underlying mechanisms. European Journal of Neuroscience, 12(1), 345-352.
  • Olivo, G., Nilsson, J., Garzón, B., Lebedev, A., Wåhlin, A., Tarassova, O., ... & Lövdén, M. (2021). Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: A randomized controlled study of older adults. Neuroimage, 225, 117500.
  • Perry, V. H. (2004). The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain, behavior, and immunity, 18(5), 407-413.
  • Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., ... & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104(13), 5638-5643.
  • Ploughman, M. (2008). Exercise is brain food: the effects of physical activity on cognitive function. Developmental neurorehabilitation, 11(3), 236-240.,
  • Prince, M. J., Wu, F., Guo, Y., Robledo, L. M. G., O'Donnell, M., Sullivan, R., & Yusuf, S. (2015). The burden of disease in older people and implications for health policy and practice. The Lancet, 385(9967), 549-562.
  • Qiu, C., & Fratiglioni, L. (2015). A major role for cardiovascular burden in age-related cognitive decline. Nature Reviews Cardiology, 12(5), 267-277. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137(4), 1299-1307.
  • Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., & Carmeliet, P. (2009). Role and therapeutic potential of VEGF in the nervous system. Physiological reviews, 89(2), 607-648.
  • Sanders, L. M., Hortobagyi, T., la Bastide-van Gemert, S., van der Zee, E. A., & van Heuvelen, M. J. (2019). Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PloS one, 14(1), e0210036.
  • Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988), 184-187.
  • Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., ... & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic medicine, 72(3), 239.
  • Sonntag, W. E., Lynch, C., Thornton, P., Khan, A., Bennett, S., & Ingram, R. (2000). The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. The Journal of Anatomy, 197(4), 575-585.
  • Stein, A. M., Silva, T. M. V., Coelho, F. G. D. M., Arantes, F. J., Costa, J. L. R., Teodoro, E., & Santos-Galduróz, R. F. (2018). Physical exercise, IGF-1 and cognition A systematic review of experimental studies in the elderly. Dementia & neuropsychologia, 12, 114-122.
  • Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in neurosciences, 43(7), 533-543.
  • Strle, K., Broussard, S. R., McCusker, R. H., Shen, W. H., Johnson, R. W., Freund, G. G., ... & Kelley, K. W. (2004). Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology, 145(10), 4592-4602.
  • Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabilitation and neural repair, 29(6), 577-589.
  • Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research, 60, 56-64.
  • Tarumi, T., Khan, M. A., Liu, J., Tseng, B. M., Parker, R., Riley, J., ... & Zhang, R. (2014). Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. Journal of Cerebral Blood Flow & Metabolism, 34(6), 971-978.
  • Tang, K., Xia, F. C., Wagner, P. D., & Breen, E. C. (2010). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory physiology & neurobiology, 170(1), 16-22.
  • Tong, L., Balazs, R., Soiampornkul, R., Thangnipon, W., & Cotman, C. W. (2008). Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction. Neurobiology of aging, 29(9), 1380-1393.
  • Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21(5), 1628-1634.
  • TÜİK., (2018, Mart), Türkiye İstatistik Kurumu, İstatistiklerle Yaşlılar, 2017, Sayı: 27595.
  • Uysal, N., Kiray, M., Sisman, A. R., Camsari, U. M., Gencoglu, C., Baykara, B., Aksu, I. (2015). Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats. Biotechnic & Histochemistry, 90(1), 55-68.
  • Wayne, P. M., Walsh, J. N., Taylor‐Piliae, R. E., Wells, R. E., Papp, K. V., Donovan, N. J., & Yeh, G. Y. (2014). Effect of Tai Chi on cognitive performance in older adults: Systematic review and meta‐Analysis. Journal of the American Geriatrics Society, 62(1), 25-39.
  • Wolters, F. J., Zonneveld, H. I., Hofman, A., Van Der Lugt, A., Koudstaal, P. J., Vernooij, M. W., & Ikram, M. A. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation, 136(8), 719-728.,
  • Wrigley, S., Arafa, D., & Tropea, D. (2017). Insulin-like growth factor 1: at the crossroads of brain development and aging. Frontiers in cellular neuroscience, 11, 14.
  • Vidoni, E. D., Johnson, D. K., Morris, J. K., Van Sciver, A., Greer, C. S., Billinger, S. A., ... & Burns, J. M. (2015). Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PloS one, 10(7), e0131647.
  • Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., ... & Wyss-Coray, T. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362), 90-94.
  • Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., ... & Kramer, A. F. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, behavior, and immunity, 28, 90-99.
  • Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: women who walk. Archives of internal medicine, 161(14), 1703-1708.
  • Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, (4).
  • Zheng, G., Xia, R., Zhou, W., Tao, J., & Chen, L. (2016). Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. British journal of sports medicine, 50(23), 1443-1450.

The Effect of Aerobic Exercise on Protection and Improvement of Brain Health-Review

Yıl 2023, , 101 - 113, 17.04.2023
https://doi.org/10.56061/fbujohs.1168312

Öz

With the aging population worldwide, the incidence of neurodegenerative diseases is increasing. It is important to maintain brain health throughout the extended human life. Plastic changes in brain continue in adulthood and cognitive functions such as learning, memory and attention can be improved. Exercise as a cost-effective, accessible and safe method is seen as a promising intervention to prevent and maintain cognitive functions. Growing evidence indicates that exercise, especially its aerobic form, has positive effects on brain health. The mechanism of exercise affecting brain health is one of the topics researchers are currently researching. Positive effects of exercise on brain health are thought to occur through physiological mechanisms such as new neuron generation with neurogenesis, increased cerebral circulation with angiogenesis, volumetric changes in brain regions thought to be related to cognitive functions, suppression of inflammation, and the stimulation of secretion of neurotrophins. In this review, it is aimed to briefly explain the mechanisms related to the effect of aerobic exercise to improve cognitive functions. In this review, it is aimed to briefly explain the mechanisms related to the effect of aerobic exercise to improve cognitive functions. Also, scientific literature aiming to improve cognitive functions with aerobic exercise application in healthy people was included, exercise prescriptions in these studies were examined in terms of quality. Understanding the mechanism by which exercise affects brain health can be a guide in determining how best exercise prescription can be prepared to protect cognitive health.

Proje Numarası

Çalışmamız herhangi bir proje kapsamında yapılmamıştır.

Kaynakça

  • Barnes, D. E., Yaffe, K., Satariano, W. A., & Tager, I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. Journal of the American Geriatrics Society, 51(4), 459-465.
  • Barnes, J. N., Pearson, A. G., Corkery, A. T., Eisenmann, N. A., & Miller, K. B. (2021). Exercise, arterial stiffness, and cerebral vascular function: potential impact on brain health. Journal of the International Neuropsychological Society, 27(8), 761-775.
  • Bliss, E. S., Wong, R. H., Howe, P. R., & Mills, D. E. (2021). Benefits of exercise training on cerebrovascular and cognitive function in ageing. Journal of Cerebral Blood Flow & Metabolism, 41(3), 447-470.
  • Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., ... & Mann, J. J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell stem cell, 22(4), 589-599.
  • Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports medicine, 32(9), 555-566.
  • Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20(8), 2926-2933.
  • Castro, M. G., Venutolo, C., Yau, P. L., & Convit, A. (2016). Fitness, insulin sensitivity, and frontal lobe integrity in adults with overweight and obesity. Obesity, 24(6), 1283-1289.
  • Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., ... & Kramer, A. F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain research, 1358, 172-183.
  • Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose-response relation between exercise duration and cognition. Med. Sci. Sports Exerc, 47, 159-165.
  • Chapman, S. B., Aslan, S., Spence, J. S., DeFina, L. F., Keebler, M. W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in aging neuroscience, 5, 75.
  • Chen, C., Nakagawa, S., An, Y., Ito, K., Kitaichi, Y., & Kusumi, I. (2017). The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Frontiers in neuroendocrinology, 44, 83-102.
  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., ... & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
  • Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in neurosciences, 30(9), 464-472.
  • Cunha, C., Brambilla, R., & Thomas, K. L. (2010). A simple role for BDNF in learning and memory?. Frontiers in molecular neuroscience, 3, 1.
  • Gomes da Silva, S., Simões, P. S. R., Mortara, R. A., Scorza, F. A., Cavalheiro, E. A., da Graça Naffah-Mazzacoratti, M., & Arida, R. M. (2013). Exercise-induced hippocampal anti-inflammatory response in aged rats. Journal of neuroinflammation, 10(1), 1-6.,
  • den Heijer, T., van der Lijn, F., Vernooij, M. W., de Groot, M., Koudstaal, P. J., van der Lugt, A., ... & Breteler, M. M. (2012). Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage, 63(4), 1782-1789.
  • Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctot, K. L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PloS one, 11(9), e0163037.
  • During, M. J., & Cao, L. (2006). VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Current Alzheimer Research, 3(1), 29-33. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z., & Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences, 100(23), 13632-13637.
  • Elcombe, E. L., Lagopoulos, J., Mowszowski, L., Diamond, K., Paradise, M., Hickie, I. B., ... & Naismith, S. L. (2014). Clinical and cognitive correlates of structural hippocampal change in “at-risk” older adults. Journal of Geriatric Psychiatry and Neurology, 27(2), 67-76.
  • Elcombe, E. L., Lagopoulos, J., Duffy, S. L., Lewis, S. J., Norrie, L., Hickie, I. B., & Naismith, S. L. (2015). Hippocampal volume in older adults at risk of cognitive decline: the role of sleep, vascular risk, and depression. Journal of Alzheimer's Disease, 44(4), 1279-1290.
  • Elwood, P., Galante, J., Pickering, J., Palmer, S., Bayer, A., Ben-Shlomo, Y., ... & Gallacher, J. (2013). Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the Caerphilly cohort study. PloS one, 8(12), e81877.
  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., ... & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences, 108(7), 3017-3022.
  • Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: interactions between exercise, depression, and BDNF. The Neuroscientist, 18(1), 82-97.
  • Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain research reviews, 52(1), 119-130.
  • Evans, T. E., Adams, H. H., Licher, S., Wolters, F. J., van der Lugt, A., Ikram, M. K., ... & Ikram, M. A. (2018). Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia. Neuroimage, 178, 129-135.
  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., ... & Palmer, T. D. (2003). VEGF is necessary for exercise‐induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18(10), 2803-2812.
  • Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage, 166, 230-238.
  • Fotuhi, M., Do, D., & Jack, C. (2012). Modifiable factors that alter the size of the hippocampus with ageing. Nature Reviews Neurology, 8(4), 189-202. Gates, N., Singh, M. A. F., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. The American Journal of Geriatric Psychiatry, 21(11), 1086-1097.
  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 9(1), 58-65.
  • Huang, T., Larsen, K. T., Ried‐Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain‐derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports, 24(1), 1-10.
  • Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences, 99(18), 11946-11950.
  • Kennedy, G., Hardman, R. J., Macpherson, H., Scholey, A. B., & Pipingas, A. (2017). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer's Disease, 55(1), 1-18.
  • Kirk-Sanchez, N. J., & McGough, E. L. (2014). Physical exercise and cognitive performance in the elderly: current perspectives. Clinical interventions in aging, 9, 51.
  • Kisler, K., Nelson, A. R., Montagne, A., & Zlokovic, B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 18(7), 419-434.
  • Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: a meta-analytic study—revisited. Perspectives on Psychological Science, 13(2), 213-217.
  • Licht, T., Goshen, I., Avital, A., Kreisel, T., Zubedat, S., Eavri, R., ... & Keshet, E. (2011). Reversible modulations of neuronal plasticity by VEGF. Proceedings of the National Academy of Sciences, 108(12), 5081-5086.
  • Ma, C. L., Ma, X. T., Wang, J. J., Liu, H., Chen, Y. F., & Yang, Y. (2017). Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behavioural brain research, 317, 332-339.
  • Maass, A., Düzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., ... & Düzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular psychiatry, 20(5), 585-593.
  • McSween, M. P., Coombes, J. S., MacKay, C. P., Rodriguez, A. D., Erickson, K. I., Copland, D. A., & McMahon, K. L. (2019). The immediate effects of acute aerobic exercise on cognition in healthy older adults: a systematic review. Sports Medicine, 49(1), 67-82.
  • Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute aerobic exercise based cognitive and motor priming: practical applications and mechanisms. Frontiers in psychology, 10, 2790.
  • Morland, C., Andersson, K. A., Haugen, Ø. P., Hadzic, A., Kleppa, L., Gille, A., ... & Bergersen, L. H. (2017). Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature communications, 8(1), 1-9.
  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in neurobiology, 63(1), 71-124.
  • Nishijima, T., Torres-Aleman, I., & Soya, H. (2016). Exercise and cerebrovascular plasticity. Progress in brain research, 225, 243-268.
  • Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. The Lancet Neurology, 13(8), 788-794.
  • Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British journal of sports medicine, 52(3), 154-160.
  • O'Donnell, E., Vereker, E., & Lynch, M. A. (2000). Age‐related impairment in LTP is accompanied by enhanced activity of stress‐activated protein kinases: analysis of underlying mechanisms. European Journal of Neuroscience, 12(1), 345-352.
  • Olivo, G., Nilsson, J., Garzón, B., Lebedev, A., Wåhlin, A., Tarassova, O., ... & Lövdén, M. (2021). Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: A randomized controlled study of older adults. Neuroimage, 225, 117500.
  • Perry, V. H. (2004). The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain, behavior, and immunity, 18(5), 407-413.
  • Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., ... & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104(13), 5638-5643.
  • Ploughman, M. (2008). Exercise is brain food: the effects of physical activity on cognitive function. Developmental neurorehabilitation, 11(3), 236-240.,
  • Prince, M. J., Wu, F., Guo, Y., Robledo, L. M. G., O'Donnell, M., Sullivan, R., & Yusuf, S. (2015). The burden of disease in older people and implications for health policy and practice. The Lancet, 385(9967), 549-562.
  • Qiu, C., & Fratiglioni, L. (2015). A major role for cardiovascular burden in age-related cognitive decline. Nature Reviews Cardiology, 12(5), 267-277. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137(4), 1299-1307.
  • Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., & Carmeliet, P. (2009). Role and therapeutic potential of VEGF in the nervous system. Physiological reviews, 89(2), 607-648.
  • Sanders, L. M., Hortobagyi, T., la Bastide-van Gemert, S., van der Zee, E. A., & van Heuvelen, M. J. (2019). Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PloS one, 14(1), e0210036.
  • Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988), 184-187.
  • Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., ... & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic medicine, 72(3), 239.
  • Sonntag, W. E., Lynch, C., Thornton, P., Khan, A., Bennett, S., & Ingram, R. (2000). The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. The Journal of Anatomy, 197(4), 575-585.
  • Stein, A. M., Silva, T. M. V., Coelho, F. G. D. M., Arantes, F. J., Costa, J. L. R., Teodoro, E., & Santos-Galduróz, R. F. (2018). Physical exercise, IGF-1 and cognition A systematic review of experimental studies in the elderly. Dementia & neuropsychologia, 12, 114-122.
  • Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in neurosciences, 43(7), 533-543.
  • Strle, K., Broussard, S. R., McCusker, R. H., Shen, W. H., Johnson, R. W., Freund, G. G., ... & Kelley, K. W. (2004). Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology, 145(10), 4592-4602.
  • Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabilitation and neural repair, 29(6), 577-589.
  • Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research, 60, 56-64.
  • Tarumi, T., Khan, M. A., Liu, J., Tseng, B. M., Parker, R., Riley, J., ... & Zhang, R. (2014). Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. Journal of Cerebral Blood Flow & Metabolism, 34(6), 971-978.
  • Tang, K., Xia, F. C., Wagner, P. D., & Breen, E. C. (2010). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory physiology & neurobiology, 170(1), 16-22.
  • Tong, L., Balazs, R., Soiampornkul, R., Thangnipon, W., & Cotman, C. W. (2008). Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction. Neurobiology of aging, 29(9), 1380-1393.
  • Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21(5), 1628-1634.
  • TÜİK., (2018, Mart), Türkiye İstatistik Kurumu, İstatistiklerle Yaşlılar, 2017, Sayı: 27595.
  • Uysal, N., Kiray, M., Sisman, A. R., Camsari, U. M., Gencoglu, C., Baykara, B., Aksu, I. (2015). Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats. Biotechnic & Histochemistry, 90(1), 55-68.
  • Wayne, P. M., Walsh, J. N., Taylor‐Piliae, R. E., Wells, R. E., Papp, K. V., Donovan, N. J., & Yeh, G. Y. (2014). Effect of Tai Chi on cognitive performance in older adults: Systematic review and meta‐Analysis. Journal of the American Geriatrics Society, 62(1), 25-39.
  • Wolters, F. J., Zonneveld, H. I., Hofman, A., Van Der Lugt, A., Koudstaal, P. J., Vernooij, M. W., & Ikram, M. A. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation, 136(8), 719-728.,
  • Wrigley, S., Arafa, D., & Tropea, D. (2017). Insulin-like growth factor 1: at the crossroads of brain development and aging. Frontiers in cellular neuroscience, 11, 14.
  • Vidoni, E. D., Johnson, D. K., Morris, J. K., Van Sciver, A., Greer, C. S., Billinger, S. A., ... & Burns, J. M. (2015). Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PloS one, 10(7), e0131647.
  • Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., ... & Wyss-Coray, T. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362), 90-94.
  • Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., ... & Kramer, A. F. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, behavior, and immunity, 28, 90-99.
  • Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: women who walk. Archives of internal medicine, 161(14), 1703-1708.
  • Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, (4).
  • Zheng, G., Xia, R., Zhou, W., Tao, J., & Chen, L. (2016). Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. British journal of sports medicine, 50(23), 1443-1450.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Rehabilitasyon
Bölüm Derlemeler
Yazarlar

Kübra Nur Menengiç 0000-0002-1541-1844

İpek Yeldan 0000-0002-6344-4157

Faize Elif Bahadır 0000-0002-0715-8199

Proje Numarası Çalışmamız herhangi bir proje kapsamında yapılmamıştır.
Yayımlanma Tarihi 17 Nisan 2023
Gönderilme Tarihi 29 Ağustos 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Menengiç, K. N., Yeldan, İ., & Bahadır, F. E. (2023). Aerobik Egzersizin Beyin Sağlığının Korunması ve Geliştirilmesi Üzerine Etkisi-Derleme Makalesi. Fenerbahçe University Journal of Health Sciences, 3(1), 101-113. https://doi.org/10.56061/fbujohs.1168312