Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Thermal Runaway Causes in Lithium-Ion Batteries and Investigation of Gas Release

Yıl 2025, Cilt: 13 Sayı: 1, 12 - 23, 31.12.2025
https://doi.org/10.52702/fce.1607775

Öz

Thermal runaway in lithium-ion batteries, the preferred type for electric vehicles, can result from factors like cell overheating, impact, overcharging, extreme temperatures, or exposure to flames. This can lead to fires or explosions. To understand thermal runaway under various conditions, it is crucial to analyze changes in battery systems and investigate their characteristic behaviors. In this study, Thermal runaway and gas emissions that may occur after external impacts on the battery are observed using 18650 cell size lithium ion batteries. In this study, which includes sensors that detect CO2 (carbon dioxide), O2 (oxygen), HCl (hydrogen chloride), CO (carbon monoxide), H2 (hydrogen) and C2H4 (ethylene) emissions, a thermal camera is also used to observe temperature changes. It is anticipated that the data obtained from the experiments will contribute to the literature as an important resource.

Kaynakça

  • [1] Wada, M., (2009). Research and Development of Electric Vehicles for Clean Transportation. Journal of Environmental Sciences, 21(6), 745-749. https://doi.org/10.1016/S1001-0742(08)62335-9.
  • [2] Gong, H., Du, T., Luo, W.B., Yang, D. & Zhou, L.F. (2020). The Current Process for the Recycling of Spent Lithium Ion Batteries. Frontiers Chem., 8. https://doi.org/10.3389/fchem.2020.578044.
  • [3] Caetano, R. E., Camargos, P., Ribeiro, G. S., Santos, I. R., & Santos, P. H. J. (2022). Perspectives on Lithium Ion Battery Categories For Electric Vehicle Applications: A Review of State of the Art. Int. J. Energy Res., 46(13), 19258–19268. https://doi.org/10.1002/er.7993.
  • [4] Cao, Ş., Çen, M., Ouyang, D., Wang, J., Liu, J. & Wang, Z. (2019). Effects of Heat Treatment and SOC on Fire Behaviors of Lithium İon Bat-teries Pack. Journal of Thermal Analysis and Ca-lorimetry, 136, 2429–2437. https://doi.org/ 10.1007/s10973-018-7864-9.
  • [5] Andersson, P., Blomqvist, P., Larsson, F., Lorén, A. & Mellander, B. E. (2014). Characteristics of Lithium Ion Batteries During Fire Tests. J. Power Sources, 271, 414–420. https://doi.org/10.1016/j. jpowsour.2014.08.027.
  • [6] Jones, C., Serov, A., Sudarshan, M., & Tomar, V. (2022). Investigation of Physical Effects on Prismatic Lithium-Ion Cell Electrodes After Partial Nail Puncture Using Raman Spectroscopy and Incremental Capacity Analysis. 100174, https://doi.org/10.1016/j.etran.2022.100174.
  • [7] Wang, H. at al. (2017). Progressive Mechanical Indentation of Large Format Lithium Ion Cells. J. Power Sources, 341, 156–164. https://doi.org/10.1016/j.jpowsour.2016.11.094.
  • [8] Howard, J. N. & Maleki, H. (2006). Effects of Overdischarge on Performance and Thermal Stability of A Lithium Ion Cell. J. Power Sources, 160, 1395–1402. https://doi.org/10.1016/j.jpowsour.2006.03.043.
  • [9] Hu, X. at al. (2022). Complex gas formation during combined mechanical and thermal treatments of spent lithium-ion-battery cells. Hazardous Mater., 431, 128541. https://doi.org/10.1016/j. jhazmat.2022.128541.
  • [10] Zhang, Z., (2020). A Novel Method For Screening Deep Eutectic Solvent To Recycle The Cathode Of Li-Ion Batteries. Green chemistry, 22(14). http://dx.doi.org/10.1039/D0GC00701C.
  • [11] Burch, I., Gamble, G., Ghiji, M., Joseph, P., Moinuddin, K., Novozhilov, V., Suendermann, B., (2020). A Review of Lithium-Ion Battery Fire Suppression, Energies 2020, 13, 5117. https://doi.org/10.3390/en13195117.
  • [12] Mao, B., Stoliarov, S. I., Sun, J. & Wang Q. (2019). A Review of Lithium-Ion Battery Failure Mechanisms and Fire Prevention Strategies. Energy Combustion Sci., 73, 95–131. https://doi.org/10.1016/j.pecs.2019.03.002.
  • [13] Abraham, D. P., Roth, E. P. Kostecki, R., McCarthy, K., MacLaren S., & Doughty, D. H. (2006). Diagnostic Examination of Thermally Abused Highpower Lithium-ion Cells. J. Power Sources, 161(1), 648–657. https://doi.org/10.1016/j.jpowsour.2006.04.088.
  • [14] Feng, X., He, X., Liu, X., Lu, L., Ouyang, M., & Xia, Y., (2017). Thermal runaway mechanism of lithium-ion battery for electric vehicles. Energy Storage Materials. https://doi.org/10.1016/j.ensm.2017.05.013.
  • [15] Jones, N., (2024). The New Car Batteries That Could Power The Electric Vehicle Revolution, Nature, 626 (7998), 248-251.
  • [16] Armand, M. & Tarascon J. M., “Problems and challenges facing rechargeable batteries”, Nature, (2001), 414,359,367.
  • [17] Chu G., Sun J., & Wang Q. (2005). Lithium-ion Battery Fire and Explosion. The Science of Fire Safety 2005, 8, 375–382. https://doi. org/10.3801/IAFSS.FSS.8-375.
  • [18] Sun, J. at al. (2016). Toxicity a Serious Con-cern of Thermal Runaway from Commercial Lit-hium-ion Battery. Nano Energy, 27, 313–319. https://doi.org/10.1016/j.nanoen.2016.06.031.
  • [19] Nedjalkov, A. at al. (2016). Toxic Gas Emis-sions From Damaged Lithium Ion Batteries-Analysis And Safety Enhancement Solution. Batteries, 2(1), 5. https://doi.org/ 10.3390/batteries2010005.
  • [20] Jin, Y. at al. (2020). Detection of Micro-Scale Li Dendrite Via H2 Gas Capture for Early Safety Warning. Joule, 4(8), 1714–1729. https://doi.org/ 10.1016/j.joule.2020.05.016.
  • [21] Ren, D. at al. (2017). An Electrochemical-Thermal Coupled Overcharge-Tothermal-Runaway Model For Lithium Ion Battery. J. Power Sources, (364), 328–340. https://doi.org/ 10.1016/j.jpowsour.2017.08.035.
  • [22] Chen, W., Jiang, J., Wen, J., (2021). Thermal Runaway Induced by Dynamic Overcharge of Lithium-ion Batteries Under Different Environ-mental Conditions. Journal of Thermal Analysis and Calorimetry,146, 855–863. https://doi.org/10.1007/s10973-020-10037-x.
  • [23] Cheng, C., Chow, C., Chow, W., & Kwok, J. (2019). An Experimental Study on Potential Thermal Hazards of Mobile Phones. Third Inter-national Fire Safety Symposium, Ottawa, Onta-rio, Canada.
  • [24] Knaust, C., Kwade, A., Palis, S., Sträubig, F., & Voigt, S. (2020). CFD Analysis of Sensible Enthalpy Increase Approach to Determine Heat Release Rate of Lithium-ion Battery Fires at Electric Vehicle Scale. Yangın Saf. J., 114(1). https://doi.org/102989.
  • [25] Sun, J. at al. (2016). Toxicity a Serious Con-cern of Thermal Runaway from Commercial Lit-hium-ion Battery. Nano Energy, 27, 313–319. https://doi.org/10.1016/j.nanoen.2016.06.031.
  • [26] Mao, B., Stoliarov, S.I., Sun, J., & Wang, Q. (2019). Review of lithium-ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 73, 95–131. https://doi.org/10.1016/ j.pecs.2019.03.002.
  • [27] Abraham, D. P., Roth, E. P. Kostecki, R., McCarthy, K., MacLaren S., & Doughty, D. H. (2006). Diagnostic Examination of Thermally Abused Highpower Lithium-ion Cells. J. Power Sources, 161(1), 648–657. https://doi.org/10.1016/j.jpowsour.2006.04.088.
  • [28] Shi, H., Cheng, M., Feng, Y., Qiu, C., Song, C., Yuan, N., Kang, C., Yang, K., Yuan, J., & Li, Y. (2023). Thermal Management Techniques for Lithium-ion Batteries Based on Phase Chan-ge Materials: A Systematic Review and Future Recommendations. Energies, 16 (2), 876. https://doi.org/10.3390/en16020876.
  • [29] Kim, J. et al. “State Of Health Monitoring By Gas Generation Patterns İn Commercial 18,650 Lithium-İon Batteries,” J. Electroanal. Chem., vol. 907, p. 2022, doi: 10.1016/j.jelechem.2021.115892.
  • [30]Yang X., Wang H. (2022). Experimental Study on Thermal Runaway behavior of Lithium-ion Battery and Analysis of Flammable Materi-als. 8, 250. https://doi.org/10.3390/piller8110250.
  • [31] Binbin, M., Chunpeng, Z., Conner, F., Hanwei, Z., Haodong, C., Partha, P., Jinhua, S. & Quinsong, W. (2022). Experimental And Modeling Investigation On The Gas Generation Dynamics of Lithium-Ion Batteries During Thermal Runaway. https://doi.org/10.1016/j.etran.2022.100212.
  • [32] Cui, Y., Gao, JF., Guo, DL., Jiang, X., Jin, Y., Liu, Y., Lu, HF., Sun, L., Tao, FB., Wei, DH., & Zheng, Z.K. (2020). Detection of micro-scale li dendrite via -2 gas capture for early sa-fety warning. 1714–1729.
  • [33] Fauler, G., Golubkov, W., Planteu, R., Sche-ikl, S., Stangl, C., Voitic,G., & Wiltsche, H. (2015). Thaler A. and V. Hacker (Paper) RSC Adv., 5, 57171-57186. https://doi.org/10.1039/C5RA05897J.
  • [34] Yang X., Wang H. (2022). Experimental Study on Thermal Runaway behavior of Lithium-ion Battery and Analysis of Flammable Materi-als. 8, 250. https://doi.org/10.3390/piller8110250.
  • [35] Binbin, M., Chunpeng, Z., Conner, F., Hanwei, Z., Haodong, C., Partha, P., Jinhua, S. & Quinsong, W. (2022). Experimental And Mo-deling Investigation On The Gas Generation Dy-namics of Lithium-Ion Batteries During Thermal Runaway. https://doi.org/10.1016/j.etran.2022.100212.
  • [36] Panahi, A. & Dai, Y. (2025). Thermal Ru-naway Process in Lithium-İon Batteries: Next Energy 6 100186https://doi.org/10.1016/j.nxener.2024.100186.
  • [37] Mao, B., Stoliarov, S.I., Sun, J., & Wang, Q. (2019). Review of lithium-ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 73, 95–131. https://doi.org/10.1016/ j.pecs.2019.03.002.
  • [38] Chen, S.C., Wang, Y.Y., Wan, C.C. (2006). Thermal analysis of spirally wound lithium batte-ries. J Electrochem Soc, 153, 637. https://doi.org/10.1149/1.2168051.
  • [39] Ramadass, P., Santhanagopalan, S., Zhang, & Zhengming, J. (2009). Internal short circuit analysis in a lithium-ion cell. Power Sources, 194, 550–557. https:// doi.org/ 10.1016/jpowsour.2009.05.002.
  • [40] Finegan, D., Robinson, J.B., & Scheel, M. at al. (2015). High-speed tomography processing of lithium-ion batteries during thermal runaway. Nat Commune, 6, 6924. https://doi.org/ 10.1038/ncomms7924.
  • [41] Cai, L.,& White, R.E. (2011). Mathematical modeling of a lithium-ion battery with thermal effects in Multiphysics (MP) software. J. Power Sources, 196, 5985– 5989. https://doi.org/10.1016/j.jpowsour.2011.03.017.
  • [42] Kim, G.H., Pesaran, A., Spotnitz, R. (2007). A Three-Dimensional Thermal Abuse Model for Lithium-ion Cells. J. Power Sources, 170,476–489. https://doi.org/10.1016/ j.jpow sour.2007.04.018.
  • [43] Mahamud, R., Park, C. (2011). Reciproca-ting airflow to improve temperature uniformity for Li-ion battery thermal management. J. Power Sources, 196, 5685–5696. https://doi.org/10.1016/j.jpowsour.2011.02.076.
  • [44] U.S. Department of Transportation. (2014). Interim Guidance for Electric and Hybrid Elect-ric Vehicles Equipped with High-Voltage Batte-ries. DOT HS 811 575.
  • [45] Gardiner, J. (2017). The Rise of Electric Cars Could Leave us with a Major Battery Waste Problem. The Guardian.
  • [46] Polinares (2012) Bilgi Notu: Lityum. GLOBAL 2000 VerlagsgesmbH.
  • [47] Liu, Y., Sun, P., Niu, H., at al. (2020). Self-Heating Ignition Tendency of Open Circuit Po-uch Lithium-ion Battery Stack at a Hot Boun-dary. Fire Safety Journal.
  • [48] He, X., Restuccia, F., Zhang, Y., at al. (2019). Experimental Study on Self-Heating Ignition of Lithium-ion Batteries During Storage and Transportation: Effect of Cell Number. Fire Technology.
  • [49] Özyılmaz, H.S. (2018). “Yangının Kimyası”. Yangın Okulu Türkiye’nin Yangın Bilgi Partalı.

Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi

Yıl 2025, Cilt: 13 Sayı: 1, 12 - 23, 31.12.2025
https://doi.org/10.52702/fce.1607775

Öz

Elektrikli araçlar için tercih edilen tip olan lityum iyon pillerdeki termal kaçak, hücrenin aşırı ısınması, darbe, aşırı şarj, aşırı sıcaklıklar veya alevlere maruz kalma gibi faktörlerden kaynaklanabilir. Bu, yangınlara veya patlamalara yol açabilir. Çeşitli koşullar altında termal kaçakları anlamak için, pil sistemlerindeki değişiklikleri analiz etmek ve karakteristik davranışlarını araştırmak çok önemlidir. Bu çalışmada 18650 cell boyutu lityum iyon piller kullanılarak pilin dış etkenlerden alabileceği darbeler sonrası oluşabilecek termal kaçak durumu ve gaz salınımları gözlemlenmektedir. CO2 (karbondioksit), O2 (oksijen), HCl (hidrojen klorür), CO (karbonmonoksit), H2 (hidrojen) ve C2H4 (etilen) salınımını algılayan sensörlerin yer aldığı bu çalışmada sıcaklık değişimlerini gözlemlemek için de termal kamera kullanılmaktadır. Deneylerden elde edilen verilerin literatüre önemli bir kaynak olarak katkı sağlaması beklenmektedir.

Kaynakça

  • [1] Wada, M., (2009). Research and Development of Electric Vehicles for Clean Transportation. Journal of Environmental Sciences, 21(6), 745-749. https://doi.org/10.1016/S1001-0742(08)62335-9.
  • [2] Gong, H., Du, T., Luo, W.B., Yang, D. & Zhou, L.F. (2020). The Current Process for the Recycling of Spent Lithium Ion Batteries. Frontiers Chem., 8. https://doi.org/10.3389/fchem.2020.578044.
  • [3] Caetano, R. E., Camargos, P., Ribeiro, G. S., Santos, I. R., & Santos, P. H. J. (2022). Perspectives on Lithium Ion Battery Categories For Electric Vehicle Applications: A Review of State of the Art. Int. J. Energy Res., 46(13), 19258–19268. https://doi.org/10.1002/er.7993.
  • [4] Cao, Ş., Çen, M., Ouyang, D., Wang, J., Liu, J. & Wang, Z. (2019). Effects of Heat Treatment and SOC on Fire Behaviors of Lithium İon Bat-teries Pack. Journal of Thermal Analysis and Ca-lorimetry, 136, 2429–2437. https://doi.org/ 10.1007/s10973-018-7864-9.
  • [5] Andersson, P., Blomqvist, P., Larsson, F., Lorén, A. & Mellander, B. E. (2014). Characteristics of Lithium Ion Batteries During Fire Tests. J. Power Sources, 271, 414–420. https://doi.org/10.1016/j. jpowsour.2014.08.027.
  • [6] Jones, C., Serov, A., Sudarshan, M., & Tomar, V. (2022). Investigation of Physical Effects on Prismatic Lithium-Ion Cell Electrodes After Partial Nail Puncture Using Raman Spectroscopy and Incremental Capacity Analysis. 100174, https://doi.org/10.1016/j.etran.2022.100174.
  • [7] Wang, H. at al. (2017). Progressive Mechanical Indentation of Large Format Lithium Ion Cells. J. Power Sources, 341, 156–164. https://doi.org/10.1016/j.jpowsour.2016.11.094.
  • [8] Howard, J. N. & Maleki, H. (2006). Effects of Overdischarge on Performance and Thermal Stability of A Lithium Ion Cell. J. Power Sources, 160, 1395–1402. https://doi.org/10.1016/j.jpowsour.2006.03.043.
  • [9] Hu, X. at al. (2022). Complex gas formation during combined mechanical and thermal treatments of spent lithium-ion-battery cells. Hazardous Mater., 431, 128541. https://doi.org/10.1016/j. jhazmat.2022.128541.
  • [10] Zhang, Z., (2020). A Novel Method For Screening Deep Eutectic Solvent To Recycle The Cathode Of Li-Ion Batteries. Green chemistry, 22(14). http://dx.doi.org/10.1039/D0GC00701C.
  • [11] Burch, I., Gamble, G., Ghiji, M., Joseph, P., Moinuddin, K., Novozhilov, V., Suendermann, B., (2020). A Review of Lithium-Ion Battery Fire Suppression, Energies 2020, 13, 5117. https://doi.org/10.3390/en13195117.
  • [12] Mao, B., Stoliarov, S. I., Sun, J. & Wang Q. (2019). A Review of Lithium-Ion Battery Failure Mechanisms and Fire Prevention Strategies. Energy Combustion Sci., 73, 95–131. https://doi.org/10.1016/j.pecs.2019.03.002.
  • [13] Abraham, D. P., Roth, E. P. Kostecki, R., McCarthy, K., MacLaren S., & Doughty, D. H. (2006). Diagnostic Examination of Thermally Abused Highpower Lithium-ion Cells. J. Power Sources, 161(1), 648–657. https://doi.org/10.1016/j.jpowsour.2006.04.088.
  • [14] Feng, X., He, X., Liu, X., Lu, L., Ouyang, M., & Xia, Y., (2017). Thermal runaway mechanism of lithium-ion battery for electric vehicles. Energy Storage Materials. https://doi.org/10.1016/j.ensm.2017.05.013.
  • [15] Jones, N., (2024). The New Car Batteries That Could Power The Electric Vehicle Revolution, Nature, 626 (7998), 248-251.
  • [16] Armand, M. & Tarascon J. M., “Problems and challenges facing rechargeable batteries”, Nature, (2001), 414,359,367.
  • [17] Chu G., Sun J., & Wang Q. (2005). Lithium-ion Battery Fire and Explosion. The Science of Fire Safety 2005, 8, 375–382. https://doi. org/10.3801/IAFSS.FSS.8-375.
  • [18] Sun, J. at al. (2016). Toxicity a Serious Con-cern of Thermal Runaway from Commercial Lit-hium-ion Battery. Nano Energy, 27, 313–319. https://doi.org/10.1016/j.nanoen.2016.06.031.
  • [19] Nedjalkov, A. at al. (2016). Toxic Gas Emis-sions From Damaged Lithium Ion Batteries-Analysis And Safety Enhancement Solution. Batteries, 2(1), 5. https://doi.org/ 10.3390/batteries2010005.
  • [20] Jin, Y. at al. (2020). Detection of Micro-Scale Li Dendrite Via H2 Gas Capture for Early Safety Warning. Joule, 4(8), 1714–1729. https://doi.org/ 10.1016/j.joule.2020.05.016.
  • [21] Ren, D. at al. (2017). An Electrochemical-Thermal Coupled Overcharge-Tothermal-Runaway Model For Lithium Ion Battery. J. Power Sources, (364), 328–340. https://doi.org/ 10.1016/j.jpowsour.2017.08.035.
  • [22] Chen, W., Jiang, J., Wen, J., (2021). Thermal Runaway Induced by Dynamic Overcharge of Lithium-ion Batteries Under Different Environ-mental Conditions. Journal of Thermal Analysis and Calorimetry,146, 855–863. https://doi.org/10.1007/s10973-020-10037-x.
  • [23] Cheng, C., Chow, C., Chow, W., & Kwok, J. (2019). An Experimental Study on Potential Thermal Hazards of Mobile Phones. Third Inter-national Fire Safety Symposium, Ottawa, Onta-rio, Canada.
  • [24] Knaust, C., Kwade, A., Palis, S., Sträubig, F., & Voigt, S. (2020). CFD Analysis of Sensible Enthalpy Increase Approach to Determine Heat Release Rate of Lithium-ion Battery Fires at Electric Vehicle Scale. Yangın Saf. J., 114(1). https://doi.org/102989.
  • [25] Sun, J. at al. (2016). Toxicity a Serious Con-cern of Thermal Runaway from Commercial Lit-hium-ion Battery. Nano Energy, 27, 313–319. https://doi.org/10.1016/j.nanoen.2016.06.031.
  • [26] Mao, B., Stoliarov, S.I., Sun, J., & Wang, Q. (2019). Review of lithium-ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 73, 95–131. https://doi.org/10.1016/ j.pecs.2019.03.002.
  • [27] Abraham, D. P., Roth, E. P. Kostecki, R., McCarthy, K., MacLaren S., & Doughty, D. H. (2006). Diagnostic Examination of Thermally Abused Highpower Lithium-ion Cells. J. Power Sources, 161(1), 648–657. https://doi.org/10.1016/j.jpowsour.2006.04.088.
  • [28] Shi, H., Cheng, M., Feng, Y., Qiu, C., Song, C., Yuan, N., Kang, C., Yang, K., Yuan, J., & Li, Y. (2023). Thermal Management Techniques for Lithium-ion Batteries Based on Phase Chan-ge Materials: A Systematic Review and Future Recommendations. Energies, 16 (2), 876. https://doi.org/10.3390/en16020876.
  • [29] Kim, J. et al. “State Of Health Monitoring By Gas Generation Patterns İn Commercial 18,650 Lithium-İon Batteries,” J. Electroanal. Chem., vol. 907, p. 2022, doi: 10.1016/j.jelechem.2021.115892.
  • [30]Yang X., Wang H. (2022). Experimental Study on Thermal Runaway behavior of Lithium-ion Battery and Analysis of Flammable Materi-als. 8, 250. https://doi.org/10.3390/piller8110250.
  • [31] Binbin, M., Chunpeng, Z., Conner, F., Hanwei, Z., Haodong, C., Partha, P., Jinhua, S. & Quinsong, W. (2022). Experimental And Modeling Investigation On The Gas Generation Dynamics of Lithium-Ion Batteries During Thermal Runaway. https://doi.org/10.1016/j.etran.2022.100212.
  • [32] Cui, Y., Gao, JF., Guo, DL., Jiang, X., Jin, Y., Liu, Y., Lu, HF., Sun, L., Tao, FB., Wei, DH., & Zheng, Z.K. (2020). Detection of micro-scale li dendrite via -2 gas capture for early sa-fety warning. 1714–1729.
  • [33] Fauler, G., Golubkov, W., Planteu, R., Sche-ikl, S., Stangl, C., Voitic,G., & Wiltsche, H. (2015). Thaler A. and V. Hacker (Paper) RSC Adv., 5, 57171-57186. https://doi.org/10.1039/C5RA05897J.
  • [34] Yang X., Wang H. (2022). Experimental Study on Thermal Runaway behavior of Lithium-ion Battery and Analysis of Flammable Materi-als. 8, 250. https://doi.org/10.3390/piller8110250.
  • [35] Binbin, M., Chunpeng, Z., Conner, F., Hanwei, Z., Haodong, C., Partha, P., Jinhua, S. & Quinsong, W. (2022). Experimental And Mo-deling Investigation On The Gas Generation Dy-namics of Lithium-Ion Batteries During Thermal Runaway. https://doi.org/10.1016/j.etran.2022.100212.
  • [36] Panahi, A. & Dai, Y. (2025). Thermal Ru-naway Process in Lithium-İon Batteries: Next Energy 6 100186https://doi.org/10.1016/j.nxener.2024.100186.
  • [37] Mao, B., Stoliarov, S.I., Sun, J., & Wang, Q. (2019). Review of lithium-ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 73, 95–131. https://doi.org/10.1016/ j.pecs.2019.03.002.
  • [38] Chen, S.C., Wang, Y.Y., Wan, C.C. (2006). Thermal analysis of spirally wound lithium batte-ries. J Electrochem Soc, 153, 637. https://doi.org/10.1149/1.2168051.
  • [39] Ramadass, P., Santhanagopalan, S., Zhang, & Zhengming, J. (2009). Internal short circuit analysis in a lithium-ion cell. Power Sources, 194, 550–557. https:// doi.org/ 10.1016/jpowsour.2009.05.002.
  • [40] Finegan, D., Robinson, J.B., & Scheel, M. at al. (2015). High-speed tomography processing of lithium-ion batteries during thermal runaway. Nat Commune, 6, 6924. https://doi.org/ 10.1038/ncomms7924.
  • [41] Cai, L.,& White, R.E. (2011). Mathematical modeling of a lithium-ion battery with thermal effects in Multiphysics (MP) software. J. Power Sources, 196, 5985– 5989. https://doi.org/10.1016/j.jpowsour.2011.03.017.
  • [42] Kim, G.H., Pesaran, A., Spotnitz, R. (2007). A Three-Dimensional Thermal Abuse Model for Lithium-ion Cells. J. Power Sources, 170,476–489. https://doi.org/10.1016/ j.jpow sour.2007.04.018.
  • [43] Mahamud, R., Park, C. (2011). Reciproca-ting airflow to improve temperature uniformity for Li-ion battery thermal management. J. Power Sources, 196, 5685–5696. https://doi.org/10.1016/j.jpowsour.2011.02.076.
  • [44] U.S. Department of Transportation. (2014). Interim Guidance for Electric and Hybrid Elect-ric Vehicles Equipped with High-Voltage Batte-ries. DOT HS 811 575.
  • [45] Gardiner, J. (2017). The Rise of Electric Cars Could Leave us with a Major Battery Waste Problem. The Guardian.
  • [46] Polinares (2012) Bilgi Notu: Lityum. GLOBAL 2000 VerlagsgesmbH.
  • [47] Liu, Y., Sun, P., Niu, H., at al. (2020). Self-Heating Ignition Tendency of Open Circuit Po-uch Lithium-ion Battery Stack at a Hot Boun-dary. Fire Safety Journal.
  • [48] He, X., Restuccia, F., Zhang, Y., at al. (2019). Experimental Study on Self-Heating Ignition of Lithium-ion Batteries During Storage and Transportation: Effect of Cell Number. Fire Technology.
  • [49] Özyılmaz, H.S. (2018). “Yangının Kimyası”. Yangın Okulu Türkiye’nin Yangın Bilgi Partalı.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yangın Güvenliği Tasarımı, Yangın Güvenliği Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ayşegül Kirdudu

Hakan Serhad Soyhan 0000-0003-3723-9640

Gönderilme Tarihi 26 Aralık 2024
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kirdudu, A., & Soyhan, H. S. (2025). Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, 13(1), 12-23. https://doi.org/10.52702/fce.1607775
AMA Kirdudu A, Soyhan HS. Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi. FCE Journal. Aralık 2025;13(1):12-23. doi:10.52702/fce.1607775
Chicago Kirdudu, Ayşegül, ve Hakan Serhad Soyhan. “Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 13, sy. 1 (Aralık 2025): 12-23. https://doi.org/10.52702/fce.1607775.
EndNote Kirdudu A, Soyhan HS (01 Aralık 2025) Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 13 1 12–23.
IEEE A. Kirdudu ve H. S. Soyhan, “Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi”, FCE Journal, c. 13, sy. 1, ss. 12–23, 2025, doi: 10.52702/fce.1607775.
ISNAD Kirdudu, Ayşegül - Soyhan, Hakan Serhad. “Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 13/1 (Aralık2025), 12-23. https://doi.org/10.52702/fce.1607775.
JAMA Kirdudu A, Soyhan HS. Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi. FCE Journal. 2025;13:12–23.
MLA Kirdudu, Ayşegül ve Hakan Serhad Soyhan. “Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, c. 13, sy. 1, 2025, ss. 12-23, doi:10.52702/fce.1607775.
Vancouver Kirdudu A, Soyhan HS. Lityum İyon Bataryalarda Meydana Gelen Termal Kaçak Nedenlerinin Araştırılması ve Gaz Salımının İncelenmesi. FCE Journal. 2025;13(1):12-23.