Araştırma Makalesi
BibTex RIS Kaynak Göster

Modelling and Mapping of Microrefugial Areas

Yıl 2022, Cilt: 9 Sayı: 18, 77 - 84, 31.12.2022

Öz

Anadolu'nun Akdeniz Bölgesi, tarihsel iklim değişikliğinden bu yana biyoçeşitliliği koruyan, endemizmi destekleyen ve sığınak niteliğinde bir bölgedir. Refugia'nın insan kaynaklı iklim değişikliği karşısında aynı korumayı ve desteği sürdürmesi beklenebilir. Ancak hızlı ısınma ve yağıştaki azalma sığınak alanlarını daha küçük alanlara bölebilir. Bu durum, yüzyılın sonunu beklemeden, uygun olmayan iklim koşulları arasında organizmalar için uygun iklimleri barındıran mikrorefujilerin araştırılmasını gerekli kılmıştır. Bölgenin biyolojik çeşitliliğini oluşturan önemli türlerin iklim değişikliği senaryolarının etkisi altındaki dağılımını tahmin etmeyi ve bu dağılımların kesiştiği noktadaki mikro sığınma alanlarını belirlemeyi amaçladım. (üçü endemik), refugia'yı temsil ettiği varsayılmıştır. MaxEnt yardımıyla türlerin mevcut ve iklim senaryolarına göre dağılımını tahmin ettim. HadGEM2-ES model tabanlı RCP 2.6, RCP 4.5 ve RCP 8.5 senaryolarında potansiyel iklim haritalarındaki dağılımın kesiştiği noktada mikrorefuji oluşabileceğini öne sürdüm. Modelin sonuçları, türün uygun habitatlarının gelecekteki iklim değişikliğinin etkisi altında iyi senaryodan kötü senaryoya doğru azalacağını göstermiştir. Modeller ayrıca en kötü iklim koşullarında bile uygun iklim koşulları sağlayan alanları gösterdi. Mikrorefüjleri, temsilci olarak seçilen 6 tür için uygun iklim koşullarını sağlayan ortak alanlar olarak belirledim. İklim değişikliği, belirli iklim gereksinimleri olan dar bir şekilde dağılmış endemik türler gibi organizmaların yok olmasına yol açabilir. Mikro sığınak alanlarının belirlenmesi ve korunması, türleri iklim değişikliğine ve antropojenik habitat tahribatına karşı korumanın en etkili yoludur. Antropojenik iklim değişikliği sırasında, mikro sığınma alanları biyolojik çeşitliliği koruyacak ve endemizmi destekleyecektir. Bu nedenle mikrorefüjler önemlidir ve bu alanlar koruma planlarına dahil edilmelidir.

Kaynakça

  • Abellán, P., & Svenning, J. C. (2014). Refugia within refugia–patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biological Journal of the Linnean Society, 113(1), 13-28. https://doi.org/10.1111/ bij.12309.
  • Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C., & Moss, P. T. (2011). Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Research, 38(2), 122-130. https://doi.org/10.1071/WR10156.
  • Baldwin, R. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854.
  • Bezeng, B. S., Tesfamichael, S. G., & Dayananda, B. (2017). Predicting the effect of climate change on a range-restricted lizard in southeastern Australia. Current zoology, 64(2), 165-171. https://doi.org/10.1093/cz/ zox021.
  • Birks, H. J. B., & Willis, K. J. (2008). Alpines, trees, and refugia in Europe. Plant Ecology& Diversity, 1(2), 147-160. https://doi.org/10.1080/175508708023491 46.
  • Boyer, S. L., Markle, T. M., Baker, C. M., Luxbacher, A. M., & Kozak, K. H. (2016). Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian Wet Tropics. Journal of Biogeography, 43(7), 1400-1411. https://doi.org/10.1111/jbi.12717.
  • Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27(27-28), 2576-2585. https://doi.org/10.1016/j.quascirev.2008.08.032.
  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323(5915), 785-789. DOI: 10.1126/science. 1166955.
  • Dike, V. N., Shimizu, M. H., Diallo, M., Lin, Z., Nwofor, O. K., & Chineke, T. C. (2015). Modelling present and future African climate using CMIP5 scenarios in HadGEM2‐ES. International journal of climatology, 35(8), 1784-1799. https://doi.org/10.1002/joc.4084.
  • Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global change biology, 17(2), 1022-1035. https://doi.org/10.1111/j. 13652486.2010.02263.x.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., ... & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.09067590.04596.x.
  • Evangelista, P. H., Kumar, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262(3), 307-316. https://doi.org/10.1016/j.foreco.2011.03.03 6.
  • Fløjgaard, C., Normand, S., Skov, F. & Svenning, J.-C. (2009) Ice age distributions of European small mammals: insights from species distribution modelling. Journal of Biogeography, 36,1152–1163. https://doi.org/10.1111/j.13652699.2009.02089.x.
  • Fordham, D. A., Watts, M. J., Delean, S., Brook, B. W., Heard, L. M., & Bull, C. M. (2012). Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Global change biology, 18(9), 2743-2755. https://doi.org/10.1111/j.1365-2486.201 2.02742.x.
  • Groves, C. R., Game, E. T., Anderson, M. G., Cross, M., Enquist, C., Ferdana, Z., ... & Marshall, R. (2012). Incorporating climate change into systematic conservation planning. Biodiversity and Conservation, 21(7), 1651-1671. DOI 10.1007/s105 31-012-0269-3.
  • IPCC, (2013) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Harrison, S., & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2), 207-214. https://doi.org/10.1093/aob/mcw 248.
  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.09067590.2006. 04700.x.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
  • Hugall, A.,Moritz, C.,Moussalli, A. & Stanisic, J. (2002). Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences USA, 99, 6112–6117. https://doi.org/10.1073/pnas.092538699.
  • Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., ... & Franklin, S. E. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21(4), 393-404. https://doi.org/10.1111/j.1466-8238.2011.00686.x
  • Kıraç, A., & Mert, A. (2019). Will Danford’s Lizard Become Extinct in the Future? Polish Journal of Environmental Studies, 28(3), 1741-1748. https://doi.org/10.15244/pjoes/89894.
  • Kubisch, E. L., Corbalán, V., Ibargüengoytía, N. R., & Sinervo, B. (2015). Local extinction risk of three species of lizard from Patagonia as a result of global warming. Canadian Journal of Zoology, 94(1), 49-59. https://doi.org/10.1139/cjz2015-0024 .
  • Loarie, S. R., Carter, B. E., Hayhoe, K., McMahon, S., Moe, R., Knight, C. A., & Ackerly, D. D. (2008). Climate change and the future of California's endemic flora. PloS one, 3(6), e2502. https://doi.org/10.1371/ journal.pone.0002502.
  • Mert, A., Özkan, K., Şentürk, Ö., & Negiz, M. G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638. https://doi.org/10.15244/pjoes/62230.
  • Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18,521–531. https://doi.org/10.1111 /j.14668238.2009.00476.x.
  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37.
  • Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P., Fernandez- Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W., Chini, L. (2010). Scenarios for global biodiversity in the 21st century. Science 330 (6010), 1496–1501. DOI: 10.1126/science.1196624
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.02 6. Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. https://doi.org/10.1016/j.gecco.2017.02.004.
  • Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., & Svenning, J. C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334(6056), 660-664. DOI: 10.1126/science.1210173.
  • Sinervo, B., Lara Reséndiz, R. A., Miles, D. B., Lovich, J. E., Ennen, J. R., Müller, J., ..& Sites Jr, J. W. (2017). Climate Change and Collapsing Thermal Nivhes of Mexican Endemic Reptiles.
  • Şenkul, Ç., & Kaya, S. (2017). Türkiye endemik bitkilerinin coğrafi dağılışı. Türk Coğrafya Dergisi, (69), 109-120. https://doi.org/10.17211/tcd.322515.
  • Telemeco, R. S., Gangloff, E. J., Cordero, G. A., Polich, R. L., Bronikowski, A. M., & Janzen, F. J. (2017). Physiology at near‐critical temperatures, but not critical limits, varies between two lizard species that partition the thermal environment. Journal of Animal Ecology, 86(6), 1510-1522. https://doi.org/10.1111/ 13652656.12738.
  • Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B., & Ibargüengoytía, N. (2017). Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biological conservation, 206, 151-160. https://doi.org/10.1016/j. biocon.2016.12.030.
  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19729 19736. https://doi.org/10. 1073/pnas.0901639106.
  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.

Modelling and Mapping of Microrefugial Areas

Yıl 2022, Cilt: 9 Sayı: 18, 77 - 84, 31.12.2022

Öz

Since historical climate change, the Mediterranean Region of Anatolia is an area that preserves biodiversity, supports endemism and has the character of refugia. Refugia can be expected to maintain the same protection and support in the face of anthropogenic climate change. However, rapid warming and a decrease in precipitation may break down the refugia areas into smaller areas. This situation necessitated the investigation of microrefugia, which accommodated climates suitable for organisms amid unsuitable climatic conditions, without waiting for the end of the century. I aimed to estimate the distribution of the important species constituting the biological diversity of the region under the influence of climate change scenarios and to determine the microrefugial areas at the intersection of these distributions.In this study, I performed climatic habitat suitability modelling of 6 species (three of them endemic), which has been assumed to represent refugia. With the help of MaxEnt, I estimated the distribution of species according to current and climate scenarios. I have suggested that microrefugia may occur at the intersection of the distribution in potential climatic maps in the HadGEM2-ES model-based RCP 2.6, RCP 4.5 and RCP 8.5 scenarios. The results of the model showed that the appropriate habitats of the species would decrease from the good scenario to the bad scenario under the influence of future climate change. The models also showed areas that provide favourable climatic conditions even in the worst climatic conditions. I have identified microrefugia as the mutual areas that provide suitable climatic conditions for the 6 species which have been selected as representatives. Climate change can lead to the extinction of organisms, such as narrowly distributed endemic species with specific climate requirements. Identifying and preserving microrefugial areas is the most effective way to protect species against climate change and anthropogenic habitat destruction. During anthropogenic climate change, microrefugial areas will preserve biodiversity and support endemism. Therefore, microrefugia is critical, and these areas should be included in conservation plans.

Kaynakça

  • Abellán, P., & Svenning, J. C. (2014). Refugia within refugia–patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biological Journal of the Linnean Society, 113(1), 13-28. https://doi.org/10.1111/ bij.12309.
  • Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C., & Moss, P. T. (2011). Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Research, 38(2), 122-130. https://doi.org/10.1071/WR10156.
  • Baldwin, R. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854.
  • Bezeng, B. S., Tesfamichael, S. G., & Dayananda, B. (2017). Predicting the effect of climate change on a range-restricted lizard in southeastern Australia. Current zoology, 64(2), 165-171. https://doi.org/10.1093/cz/ zox021.
  • Birks, H. J. B., & Willis, K. J. (2008). Alpines, trees, and refugia in Europe. Plant Ecology& Diversity, 1(2), 147-160. https://doi.org/10.1080/175508708023491 46.
  • Boyer, S. L., Markle, T. M., Baker, C. M., Luxbacher, A. M., & Kozak, K. H. (2016). Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian Wet Tropics. Journal of Biogeography, 43(7), 1400-1411. https://doi.org/10.1111/jbi.12717.
  • Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27(27-28), 2576-2585. https://doi.org/10.1016/j.quascirev.2008.08.032.
  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323(5915), 785-789. DOI: 10.1126/science. 1166955.
  • Dike, V. N., Shimizu, M. H., Diallo, M., Lin, Z., Nwofor, O. K., & Chineke, T. C. (2015). Modelling present and future African climate using CMIP5 scenarios in HadGEM2‐ES. International journal of climatology, 35(8), 1784-1799. https://doi.org/10.1002/joc.4084.
  • Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global change biology, 17(2), 1022-1035. https://doi.org/10.1111/j. 13652486.2010.02263.x.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., ... & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.09067590.04596.x.
  • Evangelista, P. H., Kumar, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262(3), 307-316. https://doi.org/10.1016/j.foreco.2011.03.03 6.
  • Fløjgaard, C., Normand, S., Skov, F. & Svenning, J.-C. (2009) Ice age distributions of European small mammals: insights from species distribution modelling. Journal of Biogeography, 36,1152–1163. https://doi.org/10.1111/j.13652699.2009.02089.x.
  • Fordham, D. A., Watts, M. J., Delean, S., Brook, B. W., Heard, L. M., & Bull, C. M. (2012). Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Global change biology, 18(9), 2743-2755. https://doi.org/10.1111/j.1365-2486.201 2.02742.x.
  • Groves, C. R., Game, E. T., Anderson, M. G., Cross, M., Enquist, C., Ferdana, Z., ... & Marshall, R. (2012). Incorporating climate change into systematic conservation planning. Biodiversity and Conservation, 21(7), 1651-1671. DOI 10.1007/s105 31-012-0269-3.
  • IPCC, (2013) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Harrison, S., & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2), 207-214. https://doi.org/10.1093/aob/mcw 248.
  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.09067590.2006. 04700.x.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
  • Hugall, A.,Moritz, C.,Moussalli, A. & Stanisic, J. (2002). Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences USA, 99, 6112–6117. https://doi.org/10.1073/pnas.092538699.
  • Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., ... & Franklin, S. E. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21(4), 393-404. https://doi.org/10.1111/j.1466-8238.2011.00686.x
  • Kıraç, A., & Mert, A. (2019). Will Danford’s Lizard Become Extinct in the Future? Polish Journal of Environmental Studies, 28(3), 1741-1748. https://doi.org/10.15244/pjoes/89894.
  • Kubisch, E. L., Corbalán, V., Ibargüengoytía, N. R., & Sinervo, B. (2015). Local extinction risk of three species of lizard from Patagonia as a result of global warming. Canadian Journal of Zoology, 94(1), 49-59. https://doi.org/10.1139/cjz2015-0024 .
  • Loarie, S. R., Carter, B. E., Hayhoe, K., McMahon, S., Moe, R., Knight, C. A., & Ackerly, D. D. (2008). Climate change and the future of California's endemic flora. PloS one, 3(6), e2502. https://doi.org/10.1371/ journal.pone.0002502.
  • Mert, A., Özkan, K., Şentürk, Ö., & Negiz, M. G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638. https://doi.org/10.15244/pjoes/62230.
  • Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18,521–531. https://doi.org/10.1111 /j.14668238.2009.00476.x.
  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37.
  • Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P., Fernandez- Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W., Chini, L. (2010). Scenarios for global biodiversity in the 21st century. Science 330 (6010), 1496–1501. DOI: 10.1126/science.1196624
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.02 6. Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. https://doi.org/10.1016/j.gecco.2017.02.004.
  • Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., & Svenning, J. C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334(6056), 660-664. DOI: 10.1126/science.1210173.
  • Sinervo, B., Lara Reséndiz, R. A., Miles, D. B., Lovich, J. E., Ennen, J. R., Müller, J., ..& Sites Jr, J. W. (2017). Climate Change and Collapsing Thermal Nivhes of Mexican Endemic Reptiles.
  • Şenkul, Ç., & Kaya, S. (2017). Türkiye endemik bitkilerinin coğrafi dağılışı. Türk Coğrafya Dergisi, (69), 109-120. https://doi.org/10.17211/tcd.322515.
  • Telemeco, R. S., Gangloff, E. J., Cordero, G. A., Polich, R. L., Bronikowski, A. M., & Janzen, F. J. (2017). Physiology at near‐critical temperatures, but not critical limits, varies between two lizard species that partition the thermal environment. Journal of Animal Ecology, 86(6), 1510-1522. https://doi.org/10.1111/ 13652656.12738.
  • Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B., & Ibargüengoytía, N. (2017). Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biological conservation, 206, 151-160. https://doi.org/10.1016/j. biocon.2016.12.030.
  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19729 19736. https://doi.org/10. 1073/pnas.0901639106.
  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Akın Kıraç 0000-0001-5596-2256

Ahmet Mert 0000-0001-6859-0308

Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 18

Kaynak Göster

APA Kıraç, A., & Mert, A. (2022). Modelling and Mapping of Microrefugial Areas. Science and Technique in the 21st Century, 9(18), 77-84.