Araştırma Makalesi
BibTex RIS Kaynak Göster

A preliminary investigation on the effect of alloying elements on the bioactivity of titanium-based alloys

Yıl 2025, Cilt: 6 Sayı: 2, 114 - 121, 30.08.2025
https://doi.org/10.51753/flsrt.1634559

Öz

Titanium-based biomedical alloys are commonly preferred as implant materials in bone tissue applications owing to their advantages, such as their low density, superior corrosion resistance, and mechanical properties. However, osseointegration, which means ensuring the structural and functional bonding at the bone-implant interface, is a feature that still needs to be improved for titanium-based alloys. Among the surface treatments applied to titanium and its alloys to improve osseointegration and bioactivity, which is an indicator of bone tissue adhesion, alkali treatment is a prominent surface modification method due to its cost-effectiveness and practicality. Several studies have focused on the effects of modified alkali and heat treatment combinations on the bioactivity of Ti and its alloys. However, limited studies exist investigating the effects of alloying elements on the bioactivity of alkali and heat-treated titanium and its alloys in the literature. Therefore, in this study, the effects of alloying elements on bioactivity were investigated on alkali and heat-treated CP-Ti, Ti-6Al-4V, and Ti-6Al-7Nb. Alkali treatment was performed in 2M NaOH at 37°C for one week, followed by heat treatment at 600°C for one hour. Static immersion test results, conducted in triple-concentrated SBF, demonstrated that the CP-Ti surface was covered more rapidly with calcium phosphate than its alloys. On the alloy’s surfaces, sodium chloride salts precipitated, serving as an indicator of calcium phosphate formation. The distinct morphological structures formed on the alloy’s surfaces influenced the ionic exchange in SBF. Additionally, it is suggested that varying oxide layers could create diverse surface energy sites affecting bioactivity.

Kaynakça

  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., & Daoush, W. M. (2024). Titanium-based alloys and composites for orthopedic implants applications: A comprehensive review. Materials & Design, 235, 112850.
  • Abdel-Salam, M., El-Hadad, S., & Khalifa, W. (2019). Effects of microstructure and alloy composition on hydroxyapatite precipitation on alkaline treated α/β titanium alloys. Materials Science and Engineering: C, 104, 109974.
  • Akahori, T., Niinomi, M., Nakai, M., Fukuda, H., Fukui, H., & Ogawa, M. (2007). Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment. Materials Transactions, 48(3), 293-300.
  • Alasfar, R. H., & Isaifan, R. J. (2021). Aluminum environmental pollution: The silent killer. Environmental Science and Pollution Research, 28(33), 44587-44597.
  • Bakitian, F. A. (2024). A comprehensive review of the contemporary methods for enhancing osseointegration and the antimicrobial properties of titanium dental implants. Cureus, 16(9), e12345.
  • Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in Materials Science, 133, 101053.
  • Butev, E., Esen, Z., & Bor, S. (2015). In vitro bioactivity investigation of alkali treated Ti-6Al-7Nb alloy foams. Applied Surface Science, 327, 437-443.
  • Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1-57.
  • Cho, K., Niinomi, M., Nakai, M., Hieda, J., & Tao, X. (2013). Effects of alloying elements on the HAp formability on Ti alloys after alkali treatment. Materials Transactions, 54(8), 1295-1301.
  • Corkins, M. R., Abrams, S. A., Fuchs, G. J., Goday, P. S., Hannon, T. S., … & Rome, E. S. (2019). Aluminum effects in infants and children. Pediatrics, 144(6), e20193148.
  • Culfa, S., & Toker, S. M. (2023). Interaction of Ti-6Al-7Nb alloy with simulated body fluid: A preliminary biocompatibility investigation. Frontiers in Life Sciences and Related Technologies, 4(3), 111-117.
  • de Souza, G. B., Lepienski, C. M., Foerster, C. E., Kuromoto, N. K., Soares, P., & de Araújo Ponte, H. (2011). Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 756-765.
  • Feng, K. C., Wu, E. Y., Pan, Y. N., & Ou, K. L. (2007). Effects of chemical and heat treatments on surface characteristics and biocompatibility of titanium-niobium alloys. Materials Transactions, 48(11), 2978-2985.
  • Gys, J., Mullens, S., & Meynen, V. (2024). How substrate surface area and surface curvature determine kinetics and titanate formation during non-hydrothermal alkali treatment of titanium microspheres. Surfaces and Interfaces, 53, 105081.
  • Harun, W. S. W., Asri, R. I. M., Alias, J., Zulkifli, F. H., Kadirgama, K., Ghani, S. A. C., & Shariffuddin, J. H. M. (2018). A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 44(2), 1250-1268.
  • Hsieh, K.-H., Hsu, H.-C., Kao, Y.-L., Wu, S.-C., Yang, T.-Y., & Ho, W.-F. (2024). Nanohydroxyapatite/peptide composite coatings on pure titanium surfaces with nanonetwork structures using oyster shells. Nanomaterials, 14(7), 577.
  • Iwaniak, K., Kaczorowski, W., Burnat, B., & Grabarczyk, J. (2024). Alkali pre-treatment of the Ti-6Al-7Nb substrate and its impact on electrochemically deposited calcium phosphate coatings. Engineering of Biomaterials, 27, 45-52.
  • Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844-862.
  • Kazimierczak, P., & Przekora, A. (2020). Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings, 10(10), 971.
  • Kowalski, S., Wyrzykowski, D., & Inkielewicz-Stępniak, I. (2020). Molecular and cellular mechanisms of cytotoxic activity of vanadium compounds against cancer cells. Molecules, 25(7), 1757.
  • Mahajan, A., & Sidhu, S. S. (2018). Surface modification of metallic biomaterials for enhanced functionality: A review. Materials Technology, 33(2), 93-105.
  • Mazare, A., Hwang, I., & Tesler, A. B. (2024). Surface modification of TiO₂ nanotubes via pre-loaded hydroxyapatite towards enhanced bioactivity. Materials Today Communications, 39, 109216.
  • Niinomi, M., & Nakai, M. (2011). Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journal of Biomaterials, 2011, 836587.
  • Nishiguchi, S., Nakamura, T., Kobayashi, M., Kim, H. M., Miyaji, F., & Kokubo, T. (1999). The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials, 20(5), 491-500.
  • Nogueira, P., Magrinho, J., Reis, L., de Deus, A. M., Silva, M. B., Lopes, P., Oliveira, L., Castela, A., Cláudio, R., Alves, J. L., Vaz, M. F., Carmezim, M., & Santos, C. (2024). Mechanical and corrosion behaviour in simulated body fluid of as-fabricated 3D porous L-PBF 316L stainless steel structures for biomedical implants. Journal of Functional Biomaterials, 15(10), 313.
  • Ocampo, R. A., Galvis, O., Castaño, J. G., Robledo, S., Echeverría, F., & Echeverry-Rendón, M. (2024). Functionalization of modified titanium by plasma electrolytic oxidation with antibiotic and cell adhesion promoters to improve osseointegration processes. Surface and Coatings Technology, 481, 130680.
  • Pandey, A., Awasthi, A., & Saxena, K. K. (2020). Metallic implants with properties and latest production techniques: A review. Advances in Materials and Processing Technologies, 6(2), 405-440.
  • Peng, H., Guo, J., Li, B., & Huang, H. (2022). Vanadium properties, toxicity, mineral sources and extraction methods: A review. Environmental Chemistry Letters, 20(2), 1249-1263.
  • Pothala, S., & Raju, M. J. (2023). Recent advances of metallic biomaterials in additive manufacturing in biomedical implants – A review. Materials Today: Proceedings, 68, 127-135.
  • Prasad, K., Bazaka, O., Chua, M., Rochford, M., Fedrick, L., Spoor, J., Symes, R., Tieppo, M., Collins, C., Cao, A., Markwell, D., Ostrikov, K., & Bazaka, K. (2017). Metallic biomaterials: Current challenges and opportunities. Materials, 10(8), 884.
  • Rakngarm, A., Miyashita, Y., & Mutoh, Y. (2008). Formation of hydroxyapatite layer on bioactive Ti and Ti–6Al–4V by simple chemical technique. Journal of Materials Science: Materials in Medicine, 19, 1953-1961.
  • Rajabi, M., Dehghani, K., & Shahmir, H. (2024). Development of a novel Ti35Nb25Zr15Mo15V10 high-entropy alloy for metallic biomaterials. Physica B: Condensed Matter, 691, 416283.
  • Sarikayak, A., Koç, E., Kalkan, M., & Toker, S. M. (2023). Biomimetic coating of 316L stainless steel with microdeformation areas on the surface. Journal of Polytechnic, 26(1), 55-64.
  • Simbolon, S., Gunawarman, G., Susanti, O., Ramadhan, M. H., Abadi, F., Zakiyuddin, A., … & Niinomi, M. (2025). Effects of an alkali treatment on TNTZ surfaces to grow Ca-P using immersion in a simulated body fluid and Hank’s balanced salt solution. Ceramics-Silikaty, 69(3), 381-388.
  • Su, Y., Komasa, S., Sekino, T., Nishizaki, H., & Okazaki, J. (2016). Nanostructured Ti-6Al-4V alloy fabricated using modified alkali-heat treatment: Characterization and cell adhesion. Materials Science and Engineering: C, 59, 617-623.
  • Szewczyk, A., Skwira-Rucińska, A., Osińska, M., & Prokopowicz, M. (2024). The apatite-forming ability of bioactive glasses – A comparative study in human serum and Kokubo's simulated body fluid. Ceramics International, 50(23), 51030-51042.
  • Tan, S. Y., Chen, X. Z., Cao, A., & Wang, H. (2023). Biodistribution of vanadium dioxide particles in mice by consecutive gavage administration: Effects of particle size, dosage, and health condition of mice. Biological Trace Element Research, 201(6), 2917-2926.
  • Thanigaivel, S., Priya, A. K., Balakrishnan, D., Dutta, K., Rajendran, S., & Soto-Moscoso, M. (2022). Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochemical Engineering Journal, 187, 108522.
  • Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and Engineering, 42(11), 4493-4512.
  • Wang, X., Yu, Y., Ji, L., Geng, Z., Wang, J., & Liu, C. (2021). Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioactive Materials, 6(12), 4517-4530.
  • Wei, M., Kim, H. M., Kokubo, T., & Evans, J. H. (2002). Optimising the bioactivity of alkaline-treated titanium alloy. Materials Science and Engineering: C, 20(1-2), 125-134.
  • Young Kim, S., Kyoung Kim, Y., Park, I. S., Jin, G. C., Bae, T. S., & Lee, M. H. (2014). Effect of alkali and heat treatments for bioactivity of TiO₂ nanotubes. Applied Surface Science, 321, 412-419.
  • Yilmaz, B., Ayyildiz, S., Kalyoncuoglu, U. T., Tahmasebifar, A., & Baran, E. T. (2024). Surface characteristics of additively manufactured CoCr and Ti-6Al-4V dental alloys: The effects of carbon and gold thin film coatings, and alkali-heat treatment. Microscopy Research and Technique, 87(6), 1222-1240.
  • Zhang, L., Song, B., Choi, S. K., & Shi, Y. (2021). A topology strategy to reduce stress shielding of additively manufactured porous metallic biomaterials. International Journal of Mechanical Sciences, 197, 106331.

A preliminary investigation on the effect of alloying elements on the bioactivity of titanium-based alloys

Yıl 2025, Cilt: 6 Sayı: 2, 114 - 121, 30.08.2025
https://doi.org/10.51753/flsrt.1634559

Öz

Titanium-based biomedical alloys are commonly preferred as implant materials in bone tissue applications owing to their advantages, such as their low density, superior corrosion resistance, and mechanical properties. However, osseointegration, which means ensuring the structural and functional bonding at the bone-implant interface, is a feature that still needs to be improved for titanium-based alloys. Among the surface treatments applied to titanium and its alloys to improve osseointegration and bioactivity, which is an indicator of bone tissue adhesion, alkali treatment is a prominent surface modification method due to its cost-effectiveness and practicality. Several studies have focused on the effects of modified alkali and heat treatment combinations on the bioactivity of Ti and its alloys. However, limited studies exist investigating the effects of alloying elements on the bioactivity of alkali and heat-treated titanium and its alloys in the literature. Therefore, in this study, the effects of alloying elements on bioactivity were investigated on alkali and heat-treated CP-Ti, Ti-6Al-4V, and Ti-6Al-7Nb. Alkali treatment was performed in 2M NaOH at 37°C for one week, followed by heat treatment at 600°C for one hour. Static immersion test results, conducted in triple-concentrated SBF, demonstrated that the CP-Ti surface was covered more rapidly with calcium phosphate than its alloys. On the alloy’s surfaces, sodium chloride salts precipitated, serving as an indicator of calcium phosphate formation. The distinct morphological structures formed on the alloy’s surfaces influenced the ionic exchange in SBF. Additionally, it is suggested that varying oxide layers could create diverse surface energy sites affecting bioactivity.

Kaynakça

  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., & Daoush, W. M. (2024). Titanium-based alloys and composites for orthopedic implants applications: A comprehensive review. Materials & Design, 235, 112850.
  • Abdel-Salam, M., El-Hadad, S., & Khalifa, W. (2019). Effects of microstructure and alloy composition on hydroxyapatite precipitation on alkaline treated α/β titanium alloys. Materials Science and Engineering: C, 104, 109974.
  • Akahori, T., Niinomi, M., Nakai, M., Fukuda, H., Fukui, H., & Ogawa, M. (2007). Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment. Materials Transactions, 48(3), 293-300.
  • Alasfar, R. H., & Isaifan, R. J. (2021). Aluminum environmental pollution: The silent killer. Environmental Science and Pollution Research, 28(33), 44587-44597.
  • Bakitian, F. A. (2024). A comprehensive review of the contemporary methods for enhancing osseointegration and the antimicrobial properties of titanium dental implants. Cureus, 16(9), e12345.
  • Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in Materials Science, 133, 101053.
  • Butev, E., Esen, Z., & Bor, S. (2015). In vitro bioactivity investigation of alkali treated Ti-6Al-7Nb alloy foams. Applied Surface Science, 327, 437-443.
  • Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1-57.
  • Cho, K., Niinomi, M., Nakai, M., Hieda, J., & Tao, X. (2013). Effects of alloying elements on the HAp formability on Ti alloys after alkali treatment. Materials Transactions, 54(8), 1295-1301.
  • Corkins, M. R., Abrams, S. A., Fuchs, G. J., Goday, P. S., Hannon, T. S., … & Rome, E. S. (2019). Aluminum effects in infants and children. Pediatrics, 144(6), e20193148.
  • Culfa, S., & Toker, S. M. (2023). Interaction of Ti-6Al-7Nb alloy with simulated body fluid: A preliminary biocompatibility investigation. Frontiers in Life Sciences and Related Technologies, 4(3), 111-117.
  • de Souza, G. B., Lepienski, C. M., Foerster, C. E., Kuromoto, N. K., Soares, P., & de Araújo Ponte, H. (2011). Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 756-765.
  • Feng, K. C., Wu, E. Y., Pan, Y. N., & Ou, K. L. (2007). Effects of chemical and heat treatments on surface characteristics and biocompatibility of titanium-niobium alloys. Materials Transactions, 48(11), 2978-2985.
  • Gys, J., Mullens, S., & Meynen, V. (2024). How substrate surface area and surface curvature determine kinetics and titanate formation during non-hydrothermal alkali treatment of titanium microspheres. Surfaces and Interfaces, 53, 105081.
  • Harun, W. S. W., Asri, R. I. M., Alias, J., Zulkifli, F. H., Kadirgama, K., Ghani, S. A. C., & Shariffuddin, J. H. M. (2018). A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 44(2), 1250-1268.
  • Hsieh, K.-H., Hsu, H.-C., Kao, Y.-L., Wu, S.-C., Yang, T.-Y., & Ho, W.-F. (2024). Nanohydroxyapatite/peptide composite coatings on pure titanium surfaces with nanonetwork structures using oyster shells. Nanomaterials, 14(7), 577.
  • Iwaniak, K., Kaczorowski, W., Burnat, B., & Grabarczyk, J. (2024). Alkali pre-treatment of the Ti-6Al-7Nb substrate and its impact on electrochemically deposited calcium phosphate coatings. Engineering of Biomaterials, 27, 45-52.
  • Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844-862.
  • Kazimierczak, P., & Przekora, A. (2020). Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings, 10(10), 971.
  • Kowalski, S., Wyrzykowski, D., & Inkielewicz-Stępniak, I. (2020). Molecular and cellular mechanisms of cytotoxic activity of vanadium compounds against cancer cells. Molecules, 25(7), 1757.
  • Mahajan, A., & Sidhu, S. S. (2018). Surface modification of metallic biomaterials for enhanced functionality: A review. Materials Technology, 33(2), 93-105.
  • Mazare, A., Hwang, I., & Tesler, A. B. (2024). Surface modification of TiO₂ nanotubes via pre-loaded hydroxyapatite towards enhanced bioactivity. Materials Today Communications, 39, 109216.
  • Niinomi, M., & Nakai, M. (2011). Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journal of Biomaterials, 2011, 836587.
  • Nishiguchi, S., Nakamura, T., Kobayashi, M., Kim, H. M., Miyaji, F., & Kokubo, T. (1999). The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials, 20(5), 491-500.
  • Nogueira, P., Magrinho, J., Reis, L., de Deus, A. M., Silva, M. B., Lopes, P., Oliveira, L., Castela, A., Cláudio, R., Alves, J. L., Vaz, M. F., Carmezim, M., & Santos, C. (2024). Mechanical and corrosion behaviour in simulated body fluid of as-fabricated 3D porous L-PBF 316L stainless steel structures for biomedical implants. Journal of Functional Biomaterials, 15(10), 313.
  • Ocampo, R. A., Galvis, O., Castaño, J. G., Robledo, S., Echeverría, F., & Echeverry-Rendón, M. (2024). Functionalization of modified titanium by plasma electrolytic oxidation with antibiotic and cell adhesion promoters to improve osseointegration processes. Surface and Coatings Technology, 481, 130680.
  • Pandey, A., Awasthi, A., & Saxena, K. K. (2020). Metallic implants with properties and latest production techniques: A review. Advances in Materials and Processing Technologies, 6(2), 405-440.
  • Peng, H., Guo, J., Li, B., & Huang, H. (2022). Vanadium properties, toxicity, mineral sources and extraction methods: A review. Environmental Chemistry Letters, 20(2), 1249-1263.
  • Pothala, S., & Raju, M. J. (2023). Recent advances of metallic biomaterials in additive manufacturing in biomedical implants – A review. Materials Today: Proceedings, 68, 127-135.
  • Prasad, K., Bazaka, O., Chua, M., Rochford, M., Fedrick, L., Spoor, J., Symes, R., Tieppo, M., Collins, C., Cao, A., Markwell, D., Ostrikov, K., & Bazaka, K. (2017). Metallic biomaterials: Current challenges and opportunities. Materials, 10(8), 884.
  • Rakngarm, A., Miyashita, Y., & Mutoh, Y. (2008). Formation of hydroxyapatite layer on bioactive Ti and Ti–6Al–4V by simple chemical technique. Journal of Materials Science: Materials in Medicine, 19, 1953-1961.
  • Rajabi, M., Dehghani, K., & Shahmir, H. (2024). Development of a novel Ti35Nb25Zr15Mo15V10 high-entropy alloy for metallic biomaterials. Physica B: Condensed Matter, 691, 416283.
  • Sarikayak, A., Koç, E., Kalkan, M., & Toker, S. M. (2023). Biomimetic coating of 316L stainless steel with microdeformation areas on the surface. Journal of Polytechnic, 26(1), 55-64.
  • Simbolon, S., Gunawarman, G., Susanti, O., Ramadhan, M. H., Abadi, F., Zakiyuddin, A., … & Niinomi, M. (2025). Effects of an alkali treatment on TNTZ surfaces to grow Ca-P using immersion in a simulated body fluid and Hank’s balanced salt solution. Ceramics-Silikaty, 69(3), 381-388.
  • Su, Y., Komasa, S., Sekino, T., Nishizaki, H., & Okazaki, J. (2016). Nanostructured Ti-6Al-4V alloy fabricated using modified alkali-heat treatment: Characterization and cell adhesion. Materials Science and Engineering: C, 59, 617-623.
  • Szewczyk, A., Skwira-Rucińska, A., Osińska, M., & Prokopowicz, M. (2024). The apatite-forming ability of bioactive glasses – A comparative study in human serum and Kokubo's simulated body fluid. Ceramics International, 50(23), 51030-51042.
  • Tan, S. Y., Chen, X. Z., Cao, A., & Wang, H. (2023). Biodistribution of vanadium dioxide particles in mice by consecutive gavage administration: Effects of particle size, dosage, and health condition of mice. Biological Trace Element Research, 201(6), 2917-2926.
  • Thanigaivel, S., Priya, A. K., Balakrishnan, D., Dutta, K., Rajendran, S., & Soto-Moscoso, M. (2022). Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochemical Engineering Journal, 187, 108522.
  • Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and Engineering, 42(11), 4493-4512.
  • Wang, X., Yu, Y., Ji, L., Geng, Z., Wang, J., & Liu, C. (2021). Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioactive Materials, 6(12), 4517-4530.
  • Wei, M., Kim, H. M., Kokubo, T., & Evans, J. H. (2002). Optimising the bioactivity of alkaline-treated titanium alloy. Materials Science and Engineering: C, 20(1-2), 125-134.
  • Young Kim, S., Kyoung Kim, Y., Park, I. S., Jin, G. C., Bae, T. S., & Lee, M. H. (2014). Effect of alkali and heat treatments for bioactivity of TiO₂ nanotubes. Applied Surface Science, 321, 412-419.
  • Yilmaz, B., Ayyildiz, S., Kalyoncuoglu, U. T., Tahmasebifar, A., & Baran, E. T. (2024). Surface characteristics of additively manufactured CoCr and Ti-6Al-4V dental alloys: The effects of carbon and gold thin film coatings, and alkali-heat treatment. Microscopy Research and Technique, 87(6), 1222-1240.
  • Zhang, L., Song, B., Choi, S. K., & Shi, Y. (2021). A topology strategy to reduce stress shielding of additively manufactured porous metallic biomaterials. International Journal of Mechanical Sciences, 197, 106331.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makaleleri
Yazarlar

E. Serhad Özbulut 0000-0001-8504-4456

Sıdıka Mine Toker 0000-0003-0762-242X

Barkın Bayram 0009-0009-7140-3484

Hilal Ceran 0009-0002-4846-0359

Merve Nur Sekendiz 0009-0000-0655-6462

Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 20 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Özbulut, E. S., Toker, S. M., Bayram, B., … Ceran, H. (2025). A preliminary investigation on the effect of alloying elements on the bioactivity of titanium-based alloys. Frontiers in Life Sciences and Related Technologies, 6(2), 114-121. https://doi.org/10.51753/flsrt.1634559


Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.