Some Refinements and Reverses of Callebaut's Inequality for Isotonic Functionals via a Result Due to Cartwright and Field
Year 2024,
, 1 - 11, 31.03.2024
Sever Dragomır
Abstract
In this paper we obtain some refinements and reverses of Callebaut's inequality for isotonic functionals via a result of Young's inequality due to Cartwright and Field.
References
- [1] P.R. Beesack and J.E. Pecaric, On Jessen’s inequality for convex functions, J. Math. Anal. Appl.110 (1985), 536-552.
$\href{https://doi.org/10.1016/0022-247X(85)90315-4}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$
- [2] J.E. Pecaric, On Jessen’s inequality for convex functions (III), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(91)90393-E}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-5644248294&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}$
- [3] J.E. Pecaric and P.R. Beesack, On Jessen’s inequality for convex functions (II), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(86)90296-9}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38249039395&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}$
- [4] D. Andrica and C. Badea, Gruss’ inequality for positive linear functionals, Periodica Math. Hung., 19 (1998), 155-167. $\href{https://doi.org/10.1007/BF01848061}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0010162730&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Gr%C3%BCss%27+inequality+for+positive+linear+functionals%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=0}{[\mbox{Scopus}]}
$
- [5] S.S. Dragomir, A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. Math., 24(1) (1992), 101-106.
- [6] S.S. Dragomir, On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2(3)(2001), Article 36.
- [7] S.S. Dragomir, On the Jessen’s inequality for isotonic linear functionals, Nonlinear Anal. Forum, 7(2)(2002), 139-151.
- [8] S.S. Dragomir, On the Lupas-Beesack-Pecaric inequality for isotonic linear functionals, Nonlinear Funct. Anal. & Appl., 7(2)(2002), 285-298.
- [9] S.S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478. $\href{https://doi.org/10.1017/S000497270004051X}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33845754082&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bounds+for+the+normalized+Jensen+functional%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=3}{[\mbox{Scopus}]}$
- [10] S.S. Dragomir and N.M. Ionescu, On some inequalities for convex-dominated functions, L’Anal. Num. Theor. L’Approx., 19(1) (1990),
21-27.
- [11] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria
University, 2000. http://rgmia.vu.edu.au/monographs.html
- [12] S.S. Dragomir, C.E.M. Pearce and J.E. Peˇcari´c, On Jessen’s and related inequalities for isotonic sublinear functionals, Acta. Sci. Math., 61
(1995), 373-382.
- [13] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(1) (2010), 262-269 $\href{https://doi.org/10.1016/j.jmaa.2009.08.059}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-70349378865&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Improved+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000273063900024}{[\mbox{Web of Science}]}$
- [14] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59(9) (2011), 1031-1037.
$\href{https://doi.org/10.1080/03081087.2010.551661}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79961134150&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Reverse+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000293598100007}{[\mbox{Web of Science}]}$
- [15] A. Lupas¸, A generalisation of Hadamard’s inequalities for convex functions, Univ. Beograd. Elek. Fak., 577-579 (1976), 115-121.
- [16] D.I. Cartwright and M.J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
$$
- [17] D.K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494. $\href{https://doi.org/10.1016/0022-247X(65)90016-8}{[\mbox{CrossRef}]}
%\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$