Research Article
BibTex RIS Cite

Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials

Year 2024, , 59 - 76, 30.06.2024
https://doi.org/10.33401/fujma.1365120

Abstract

This article defines two common $q$-orthogonal polynomials: homogeneous $q$-Laguerre polynomials and homogeneous little $q$-Jacobi polynomials. They can be viewed separately as solutions to two $q$-partial differential equations. Furthermore, an analytic function satisfies a certain system of $q$-partial differential equations if and only if it can be expanded in terms of homogeneous $q$-Laguerre polynomials or homogeneous little $q$-Jacobi polynomials. As applications, several generalized Ramanujan $q$-beta integrals and Andrews-Askey integrals are obtained.

References

  • [1] W.A. Al-Salam and L. Carlitz, Some orthogonal q-polynomials, Math. Nachr. 30(1-2) (1965), 47–61. $ \href{ https://doi.org/10.1002/mana.19650300105}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966219999&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Orthogonal+q-Polynomials%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} $
  • [2] A. deMedicis and X.G. Viennot, Moments of Laguerre q-polynomials and the Foata-Zeilberger bijection, (French) Adv. in Appl. Math. 15(3) (1994), 262–304.
  • [3] H.E. Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, 2nd ed., 1, G. Reimer, Berlin, 1878.
  • [4] N.N. Lebedev, Special Functions and Their Applications, Dover Publications, Inc., New York, (1972).
  • [5] M.E.H. Ismail, A brief review of q-series, Lectures on orthogonal polynomials and special functions, 76–130, London Math. Soc. Lecture Note Ser., 464, Cambridge Univ. Press, Cambridge, (2021). $ \href{https://doi.org/10.1017/9781108908993.003}{[\mbox{CrossRef}]} $
  • [6] G. Gasper and M. Rahman, Basic Hypergeometric Series, With a Foreword by Richard Askey, Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. $ \href{https://doi.org/10.1017/CBO9780511526251}{[\mbox{CrossRef}]} $
  • [7] Z.G. Liu, A q-operational equation and the Rogers-Szeg˝o polynomials, Sci. China Math., 66(6) (2023), 1199–1216. $ \href{https://doi.org/10.1007/s11425-021-1999-2}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146154571&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+%24q%24-operational+equation+and+the+Rogers-Szeg%C3%B6+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000912065500001}{[\mbox{Web of Science}]} $
  • [8] Z.G. Liu, On the Askey-Wilson polynomials and a q-beta integral, Proc. Amer. Math. Soc., 149(11) (2021), 4639–4648. $ \href{http://dx.doi.org/10.1090/proc/15584}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85114845014&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Askey-Wilson+polynomials+and+a+%24q%24-beta+integral%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000695492700010}{[\mbox{Web of Science}]} $
  • [9] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and ”q”) multisum/integral identities, Invent. Math., 108(3)(1992), 575–633. $ \href{https://doi.org/10.1007/BF02100618}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992HW22800004}{[\mbox{Web of Science}]} $
  • [10] W.C. Chu, Inversion techniques and combinatorial identities, Boll. Un. Mat. Ital. B 7B(4) (1993), 737–760. $ \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1993MN83000001}{[\mbox{Web of Science}]} $
  • [11] J. Gu, D.K. Yang and Q. Bao, Two q-Operational Equations and Hahn Polynomials, Complex Anal. Oper. Theory 18(3) (2024), Paper No. 53. $ \href{https://doi.org/10.1007/s11785-024-01496-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187110474&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+%24q%24-Operational+Equations+and+Hahn+Polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001179086800002}{[\mbox{Web of Science}]} $
  • [12] H.C. Agrawal and A.K. Agrawal, Basic hypergeometric series and the operator (qaD), J. Indian Acad. Math. 15(1)(1993), 81–88.
  • [13] R. Askey and D.T. Haimo, Series inversion of some convolution transforms, J. Math. Anal. Appl. 59(1) (1977), 119–129. $ \href{https://doi.org/10.1016/0022-247X(77)90096-8}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-49449124969&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Series+inversion+of+some+convolution+transforms%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} $
  • [14] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, II, J. Combin. Theory Ser. A, 80(2) (1997), 175–195. $ \href{https://doi.org/10.1006/jcta.1997.2801}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0038877325&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Parameter+augmentation+for+basic+hypergeometric+series%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1997YH17700001}{[\mbox{Web of Science}]} $
  • [15] W.Y.C. Chen and Z.G. Liu, Parameter Augmentation for Basic Hypergeometric Series, I. Mathematical Essays in Honor of Gian-Carlo Rota, 111–129, Progr. Math., 161, Birkhauser Boston, Boston, MA, (1998). $ \href{https://doi.org/10.1007/978-1-4612-4108-9_5}{[\mbox{CrossRef}]} $
  • [16] G.E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25(3) (1970), 554–558. $ \href{https://doi.org/10.2307/2036642}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84968478823&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+transformation+of+bilateral+series+with+applications%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} $
  • [17] M.J. Wang, q-integral representation of the Al-Salam-Carlitz polynomials, Appl. Math. Lett., 22(6)(2009), 943–945. $ \href{https://doi.org/10.1016/j.aml.2009.01.002}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000266213800025}{[\mbox{Web of Science}]} $
  • [18] J. Cao, Some integrals involving q-Laguerre polynomials and applications, Abstr. Appl. Anal. 2013, Art. ID 302642, 13 pp. $ \href{https://doi.org/10.1155/2013/302642}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84881505035&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+integrals+involving+%24q%24-Laguerre+polynomials+and+applications%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000322485200001}{[\mbox{Web of Science}]} $
  • [19] H.L. Saad and M.A. Abdlhusein, New application of the Cauchy operator on the homogeneous Rogers-Szegö polynomials, Ramanujan J. 56(1)(2021), 347–367. $\href{https://doi.org/10.1007/s11139-021-00432-9}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105951132&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+application+of+the+Cauchy+operator+on+the+homogeneous%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000650514000001}{[\mbox{Web of Science}]} $
  • [20] H. Aslan and M.E.H. Ismail, A q-translation approach to Liu’s calculus, Ann. Comb., 23(3-4) (2019), 465–488. $ \href{https://doi.org/10.1007/s00026-019-00450-x}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85074590241&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+A+%24q%24-translation+approach+to+Liu%27s+calculus%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000494203500001}{[\mbox{Web of Science}]} $
  • [21] M.E.H. Ismail, R.M. Zhang and K. Zhou, q-fractional Askey-Wilson integrals and related semigroups of operators, Phys. D: Nonlinear Phenom., 442 (2022), Paper No. 133534, 15 pp. $ \href{https://doi.org/10.1016/j.physd.2022.133534}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85139855414&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-fractional+Askey-Wilson+integrals+and+related+semigroups+of+operators%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000880401700017}{[\mbox{Web of Science}]} $
  • [22] W.C. Chu and J.M. Campbell, Expansions over Legendre polynomials and infinite double series identities, Ramanujan J., 60(2) (2023), 317–353. $\href{https://doi.org/10.1007/s11139-022-00663-4}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85145208425&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Expansions+over+Legendre+polynomials+and+infinite+double+series+identities%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000905912000004}{[\mbox{Web of Science}]} $
  • [23] G. Bhatnagar and S. Rai, Expansion formulas for multiple basic hypergeometric series over root systems, Adv. in Appl. Math., 137 (2022), Paper No. 102329. $ \href{https://doi.org/10.1016/j.aam.2022.102329}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85126397158&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Expansion+formulas+for+multiple+basic+hypergeometric+series+over+root+systems%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000796004000001}{[\mbox{Web of Science}]} $
  • [24] C.A. Wei and D.X. Gong, Several transformation formulas for basic hypergeometric series. J. Diff. Equ. Appl., 27(2) (2021), 157–171. $\href{https://doi.org/10.1080/10236198.2021.1876683}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000611665700001}{[\mbox{Web of Science}]} $
  • [25] J.P. Fang and V.J.W. Guo, Some q-supercongruences related to Swisher’s (H.3) conjecture, Int. J. Number Theory 18(7) (2022), 1417–1427. $ \href{https://doi.org/10.1142/S1793042122500725}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85122022625&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+%24q%24-supercongruences+related+to+Swisher%27s+%28H.3%29+conjecture%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000810484600003}{[\mbox{Web of Science}]} $
  • [26] Z.G. Liu, Two q-difference equations and q-operator identities, J. Differ. Equ. Appl., 16(11) (2010), 1293–1307. $ \href{https://doi.org/10.1080/10236190902810385}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-78149366394&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+%24q%24-difference+equations+and+%24q%24-operator+identities%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000283879100004}{[\mbox{Web of Science}]} $
  • [27] Z.G. Liu, An extension of the non-terminating 6f5 summation and the Askey-Wilson polynomials, J. Differ. Equ. Appl. 17(10) (2011), 1401– 1411. $ \href{https://doi.org/10.1080/10236190903530735}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80053013753&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22summation+and+the+Askey-Wilson+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000295120800001}{[\mbox{Web of Science}]} $
  • [28] Z.G. Liu, On the q-partial differential equations and q-series, in: The Legacy of Srinivasa Ramanujan, in: Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan Math. Soc., Mysore, (2013), 213–250. $\href{https://doi.org/10.48550/arXiv.1805.02132}{[\mbox{CrossRef}]} $
  • [29] Z.G. Liu, A q-extension of a partial differential equation and the Hahn polynomials, Ramanujan J., 38(3) (2015), 481–501. $ \href{https://doi.org/10.1007/s11139-014-9632-1}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84947128473&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+%24q%24-extension+of+a+partial+differential+equation+and+the+Hahn+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000364969700003}{[\mbox{Web of Science}]} $
  • [30] Z.G. Liu, On a system of partial differential equations and the bivariate Hermite polynomials, J. Math. Anal. Appl., 45(1) (2017), 1–17. $\href{https://doi.org/10.1016/j.jmaa.2017.04.066}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85018722466&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+system+of+partial+differential+equations+and+the+bivariate+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000402450900001}{[\mbox{Web of Science}]} $
  • [31] Z.G. Liu, On the complex Hermite polynomials, Filomat, 34(2) (2020), 409–420. $ \href{https://doi.org/10.2298/FIL2002409L}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096915507&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+complex+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000595329700014}{[\mbox{Web of Science}]} $
  • [32] Z.G. Liu, A multiple q-translation formula and its implications, Acta Math. Sin., 39(12) (2023), 2338–2363. $ \href{https://doi.org/10.1007/s10114-023-2237-0}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85170224261&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+multiple+%24q%24-translation+formula+and+its+implications%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001071738200016}{[\mbox{Web of Science}]} $
  • [33] Z.G. Liu, A multiple q-exponential differential operational identity, Acta Math. Sci. Ser. B, 43(6)(2023), 2449–2470. $ \href{https://doi.org/10.1007/s10473-023-0608-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85175813592&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+multiple+%24q%24-exponential+differential+operational+identity%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001103749200012}{[\mbox{Web of Science}]} $
  • [34] D.W. Niu and L. Li, q-Laguerre polynomials and related q-partial differential equations, J. Diff. Equ. Appl. 24(3) (2018), 375–390. $\href{https://doi.org/10.1080/10236198.2017.1409221}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85037973429&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-Laguerre+polynomials+and+related+%24q%24-partial+differential+equations%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000423855600004}{[\mbox{Web of Science}]} $
  • [35] J. Cao, A note on generalized q-difference equations for q-beta and Andrews-Askey integral, J. Math. Anal. Appl. 412(2) (2014), 841–851. $\href{https://doi.org/10.1016/j.jmaa.2013.11.027}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84891502262&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+generalized+%24q%24-difference+equations+for+%24q%24-beta+and+Andrews-Askey+integral%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000330419500020}{[\mbox{Web of Science}]} $
  • [36] J. Cao, Homogeneous q-difference equations and generating functions for q-hypergeometric polynomials, Ramanujan J. 40(1) (2016), 177– 192. $ \href{http://dx.doi.org/10.1007%2Fs11139-015-9676-x}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84923338102&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-difference+equations+and+generating+functions+for+%24q%24-hypergeometric+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} $
  • [37] J. Cao, Homogeneous q-partial difference equations and some applications, Adv. Appl. Math. 84 (2017), 47–72. $ \href{https://doi.org/10.1016/j.aam.2016.11.001}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84998953943&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-partial+difference+equations+and+some+applications%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393264600004}{[\mbox{Web of Science}]} $
  • [38] J. Cao and D.W. Niu, A note on q-difference equations for Cigler’s polynomials, J. Diff. Equ. Appl. 22(12) (2016), 1880–1892. $ \href{https://doi.org/10.1080/10236198.2016.1250750}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84994175603&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+%24q%24-difference+equations+for+Cigler%27s+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393123900007}{[\mbox{Web of Science}]} $
  • [39] S. Arjika, q-difference equations for homogeneous q-difference operators and their applications, J. Difference Equ. Appl. 26(7) (2020), 987–999. $ \href{https://doi.org/10.1080/10236198.2020.1804888}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85089467901&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-difference+equations+for+homogeneous+%24q%24-difference+operators+and+their+applications%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000559864400001}{[\mbox{Web of Science}]} $
  • [40] M.A. Abdlhusein, Two operator representations for the trivariate q-polynomials and Hahn polynomials, Ramanujan J., 40(3) (2016), 491– 509. $ \href{https://doi.org/10.1007/s11139-015-9731-7}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84946882220&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+operator+representations+for+the+trivariate%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000379866300004}{[\mbox{Web of Science}]} $
  • [41] J. Cao, T.X. Cai and L.P. Cai, A note on q-partial differential equations for generalized q-2D Hermite polynomials, Progress on difference equations and discrete dynamical systems, 201–211, Springer Proc. Math. Stat., 341, Springer, Cham, (2020). $ \href{https://doi.org/10.1007/978-3-030-60107-2_8}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85101536544&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+%24q%24-partial+differential+equations+for+generalized+%24q%24-2D+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} $
  • [42] J. Cao, H.L. Zhou and S. Arjika, Generalized homogeneous q-difference equations for q-polynomials and their applications to generating functions and fractional q-integrals, Adv. Differ. Equ., 2021(1) (2021), 329. $ \href{https://doi.org/10.1186/s13662-021-03484-9}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85109789708&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+homogeneous+%24q%24-difference+equations+for+%24q%24-polynomials+and+their+applications+to+generating+functions+and+fractional+%24q%24-integrals%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000672668900002}{[\mbox{Web of Science}]} $
  • [43] Z.Y. Jia, Homogeneous q-difference equations and generating functions for the generalized 2D-Hermite polynomials, Taiwanese J. Math. 25(1) (2021), 45–63. $\href{https://doi.org/10.11650/tjm/200804}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85100784193&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-difference+equations+and+generating+functions+for+the+generalized+2D-Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000629107000003}{[\mbox{Web of Science}]} $
  • [44] H.W.J. Zhang, (q;c)-derivative operator and its applications, Adv. Appl. Math. 121 (2020), 102081, 23 pp. $ \href{https://doi.org/10.1016/j.aam.2020.102081}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000577542300003}{[\mbox{Web of Science}]} $
  • [45] S. Arjika and M.K. Mahaman, q-difference equation for generalized trivariate q-Hahn polynomials, Appl. Anal. Optim. 5(1) (2021), 1–11. $ \href{http://yokohamapublishers.jp/online2/opaao/vol5/p1.html}{[Web]} $
  • [46] J. Cao, B.B. Xu and S. Arjika, A note on generalized q-difference equations for general Al-Salam-Carlitz polynomials, Adv. Differ. Equ.,2020(1) (2020), 668. $ \href{https://doi.org/10.1186/s13662-020-03133-7}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85095110366&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+generalized+%24q%24-difference+equations+for+general+Al-Salam-Carlitz+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000619928500002}{[\mbox{Web of Science}]} $
  • [47] J. Cao, J.Y. Huang, M. Fadel and S. Arjika, A review of q-difference equations for Al-Salam-Carlitz polynomials and applications toU(n+1) type generating functions and Ramanujan’s integrals, Mathematics. 11(7) (2023), 1655. $ \href{https://doi.org/10.3390/math11071655}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85152798084&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+review+of+%24q%24-difference+equations+for+Al-Salam-Carlitz+polynomials+and+applications+to+%24U%28n%2B1%29%24+type+generating+functions+and+Ramanujan%27s+integrals%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000968779500001}{[\mbox{Web of Science}]} $
  • [48] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genu¨gen, Math. Nachr. 2(1-2) (1949), 4–34. $ \href{http://dx.doi.org/10.1002/mana.19490020103}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0003124908&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Uber+Orthogonalpolynome%2C+die+q-Differenzengleichungen+gen%C3%BCgen%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} $
  • [49] R. Koekoek and R.F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Tech. Rep. 98–17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1998. $ \href{https://fa.ewi.tudelft.nl/~koekoek/askey/}{[Web]} $
  • [50] R. Askey, Limits of some q-Laguerre polynomials, J. Approx. Theory. 46(3) (1986), 213–216. $ \href{https://doi.org/10.1016/0021-9045(86)90062-6}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0013380243&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Limits+of+some+%24q%24-Laguerre+polynomials%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1986C591100001}{[\mbox{Web of Science}]} $
  • [51] B. Malgrange, Lectures on Functions of Several Complex Variables, Springer-Verlag, Berlin, 1984. $ \href{https://doi.org/10.1007/978-3-319-11511-5}{[\mbox{CrossRef}]} $
  • [52] J.S. Christiansen, The moment problem associated with the q-Laguerre polynomials, Constr. Approx. 19(1)(2003), 1–22. $ \href{https://doi.org/10.1007/s00365-001-0017-5}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179482600001}{[\mbox{Web of Science}]} $
  • [53] M.E.H. Ismail and M. Rahman, The q-Laguerre polynomials and related moment problems, J. Math. Anal. Appl. 218(1) (1998), 155–174. $ \href{https://doi.org/10.1006/jmaa.1997.5771}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000072001000012}{[\mbox{Web of Science}]} $
  • [54] D.S. Moak, The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81(1) (1981), 20–47. $ \href{https://doi.org/10.1016/0022-247X(81)90048-2}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0003009316&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+%24q%24-analogue+of+the+Laguerre+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1981LU91300003}{[\mbox{Web of Science}]} $
  • [55] J. Taylor, Several Complex Variables with Connections to Algebraic Qeometry and Lie Qroups, Graduate Studies in Mathematics, 46, American Mathematical Society, Providence, 2002.
  • [56] G.E. Andrews and R. Askey, Enumeration of Partitions: The Role of Eulerian Series and q-Orthogonal Polynomials, in Higher Combinatories (M. Aigner, Ed.), 3–26, Reidel, Boston, MA (1977). $ \href{https://doi.org/10.1007/978-94-010-1220-1_1}{[\mbox{CrossRef}]} $
  • [57] G.E. Andrews and R. Askey, Classical orthogonal polynomials, in: C. Brezinski et al., Eds., PolynBmes Orthogonaux et Applications, Lecture Notes in Math. 1171 (Springer, New York, 1985), 36–62. $ \href{https://doi.org/10.1007/BFb0076530}{[\mbox{CrossRef}]} $
  • [58] G.E. Andrews, An introduction to Ramanujan’s ”lost” notebook, Amer. Math. Monthly 86(2) (1979), 89–108. $\href{https://doi.org/10.2307/2321943}{[\mbox{CrossRef}]} $
  • [59] R. Askey, Two integrals of Ramanujan, Proc. Amer. Math. Soc. 85(2) (1982), 192–194. $ \href{https://doi.org/10.2307/2044279}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966238721&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+integrals+of+Ramanujan%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} $
  • [60] G.E. Andrews and R. Askey, Another q-extension of the beta function, Proc. Amer. Math. Soc. 81(1) (1981), 97–100. $ \href{https://doi.org/10.2307/2043995}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966253958&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Another+%24q%24-extension+of+the+beta+function%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1981KY78700021}{[\mbox{Web of Science}]} $
  • [61] V.Y.B. Chen and N.S.S. Gu, The Cauchy operator for basic hypergeometric series, Adv. Appl. Math. 41(2) (2008), 177–196. $ \href{https://doi.org/10.1016/j.aam.2007.08.001}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-43449110068&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+Cauchy+operator+for+basic+hypergeometric+series%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000257149000003}{[\mbox{Web of Science}]} $
Year 2024, , 59 - 76, 30.06.2024
https://doi.org/10.33401/fujma.1365120

Abstract

References

  • [1] W.A. Al-Salam and L. Carlitz, Some orthogonal q-polynomials, Math. Nachr. 30(1-2) (1965), 47–61. $ \href{ https://doi.org/10.1002/mana.19650300105}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966219999&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Orthogonal+q-Polynomials%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} $
  • [2] A. deMedicis and X.G. Viennot, Moments of Laguerre q-polynomials and the Foata-Zeilberger bijection, (French) Adv. in Appl. Math. 15(3) (1994), 262–304.
  • [3] H.E. Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, 2nd ed., 1, G. Reimer, Berlin, 1878.
  • [4] N.N. Lebedev, Special Functions and Their Applications, Dover Publications, Inc., New York, (1972).
  • [5] M.E.H. Ismail, A brief review of q-series, Lectures on orthogonal polynomials and special functions, 76–130, London Math. Soc. Lecture Note Ser., 464, Cambridge Univ. Press, Cambridge, (2021). $ \href{https://doi.org/10.1017/9781108908993.003}{[\mbox{CrossRef}]} $
  • [6] G. Gasper and M. Rahman, Basic Hypergeometric Series, With a Foreword by Richard Askey, Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. $ \href{https://doi.org/10.1017/CBO9780511526251}{[\mbox{CrossRef}]} $
  • [7] Z.G. Liu, A q-operational equation and the Rogers-Szeg˝o polynomials, Sci. China Math., 66(6) (2023), 1199–1216. $ \href{https://doi.org/10.1007/s11425-021-1999-2}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146154571&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+%24q%24-operational+equation+and+the+Rogers-Szeg%C3%B6+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000912065500001}{[\mbox{Web of Science}]} $
  • [8] Z.G. Liu, On the Askey-Wilson polynomials and a q-beta integral, Proc. Amer. Math. Soc., 149(11) (2021), 4639–4648. $ \href{http://dx.doi.org/10.1090/proc/15584}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85114845014&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Askey-Wilson+polynomials+and+a+%24q%24-beta+integral%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000695492700010}{[\mbox{Web of Science}]} $
  • [9] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and ”q”) multisum/integral identities, Invent. Math., 108(3)(1992), 575–633. $ \href{https://doi.org/10.1007/BF02100618}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992HW22800004}{[\mbox{Web of Science}]} $
  • [10] W.C. Chu, Inversion techniques and combinatorial identities, Boll. Un. Mat. Ital. B 7B(4) (1993), 737–760. $ \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1993MN83000001}{[\mbox{Web of Science}]} $
  • [11] J. Gu, D.K. Yang and Q. Bao, Two q-Operational Equations and Hahn Polynomials, Complex Anal. Oper. Theory 18(3) (2024), Paper No. 53. $ \href{https://doi.org/10.1007/s11785-024-01496-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187110474&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+%24q%24-Operational+Equations+and+Hahn+Polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001179086800002}{[\mbox{Web of Science}]} $
  • [12] H.C. Agrawal and A.K. Agrawal, Basic hypergeometric series and the operator (qaD), J. Indian Acad. Math. 15(1)(1993), 81–88.
  • [13] R. Askey and D.T. Haimo, Series inversion of some convolution transforms, J. Math. Anal. Appl. 59(1) (1977), 119–129. $ \href{https://doi.org/10.1016/0022-247X(77)90096-8}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-49449124969&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Series+inversion+of+some+convolution+transforms%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} $
  • [14] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, II, J. Combin. Theory Ser. A, 80(2) (1997), 175–195. $ \href{https://doi.org/10.1006/jcta.1997.2801}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0038877325&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Parameter+augmentation+for+basic+hypergeometric+series%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1997YH17700001}{[\mbox{Web of Science}]} $
  • [15] W.Y.C. Chen and Z.G. Liu, Parameter Augmentation for Basic Hypergeometric Series, I. Mathematical Essays in Honor of Gian-Carlo Rota, 111–129, Progr. Math., 161, Birkhauser Boston, Boston, MA, (1998). $ \href{https://doi.org/10.1007/978-1-4612-4108-9_5}{[\mbox{CrossRef}]} $
  • [16] G.E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25(3) (1970), 554–558. $ \href{https://doi.org/10.2307/2036642}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84968478823&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+transformation+of+bilateral+series+with+applications%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} $
  • [17] M.J. Wang, q-integral representation of the Al-Salam-Carlitz polynomials, Appl. Math. Lett., 22(6)(2009), 943–945. $ \href{https://doi.org/10.1016/j.aml.2009.01.002}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000266213800025}{[\mbox{Web of Science}]} $
  • [18] J. Cao, Some integrals involving q-Laguerre polynomials and applications, Abstr. Appl. Anal. 2013, Art. ID 302642, 13 pp. $ \href{https://doi.org/10.1155/2013/302642}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84881505035&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+integrals+involving+%24q%24-Laguerre+polynomials+and+applications%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000322485200001}{[\mbox{Web of Science}]} $
  • [19] H.L. Saad and M.A. Abdlhusein, New application of the Cauchy operator on the homogeneous Rogers-Szegö polynomials, Ramanujan J. 56(1)(2021), 347–367. $\href{https://doi.org/10.1007/s11139-021-00432-9}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105951132&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+application+of+the+Cauchy+operator+on+the+homogeneous%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000650514000001}{[\mbox{Web of Science}]} $
  • [20] H. Aslan and M.E.H. Ismail, A q-translation approach to Liu’s calculus, Ann. Comb., 23(3-4) (2019), 465–488. $ \href{https://doi.org/10.1007/s00026-019-00450-x}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85074590241&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+A+%24q%24-translation+approach+to+Liu%27s+calculus%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000494203500001}{[\mbox{Web of Science}]} $
  • [21] M.E.H. Ismail, R.M. Zhang and K. Zhou, q-fractional Askey-Wilson integrals and related semigroups of operators, Phys. D: Nonlinear Phenom., 442 (2022), Paper No. 133534, 15 pp. $ \href{https://doi.org/10.1016/j.physd.2022.133534}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85139855414&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-fractional+Askey-Wilson+integrals+and+related+semigroups+of+operators%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000880401700017}{[\mbox{Web of Science}]} $
  • [22] W.C. Chu and J.M. Campbell, Expansions over Legendre polynomials and infinite double series identities, Ramanujan J., 60(2) (2023), 317–353. $\href{https://doi.org/10.1007/s11139-022-00663-4}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85145208425&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Expansions+over+Legendre+polynomials+and+infinite+double+series+identities%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000905912000004}{[\mbox{Web of Science}]} $
  • [23] G. Bhatnagar and S. Rai, Expansion formulas for multiple basic hypergeometric series over root systems, Adv. in Appl. Math., 137 (2022), Paper No. 102329. $ \href{https://doi.org/10.1016/j.aam.2022.102329}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85126397158&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Expansion+formulas+for+multiple+basic+hypergeometric+series+over+root+systems%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000796004000001}{[\mbox{Web of Science}]} $
  • [24] C.A. Wei and D.X. Gong, Several transformation formulas for basic hypergeometric series. J. Diff. Equ. Appl., 27(2) (2021), 157–171. $\href{https://doi.org/10.1080/10236198.2021.1876683}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000611665700001}{[\mbox{Web of Science}]} $
  • [25] J.P. Fang and V.J.W. Guo, Some q-supercongruences related to Swisher’s (H.3) conjecture, Int. J. Number Theory 18(7) (2022), 1417–1427. $ \href{https://doi.org/10.1142/S1793042122500725}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85122022625&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+%24q%24-supercongruences+related+to+Swisher%27s+%28H.3%29+conjecture%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000810484600003}{[\mbox{Web of Science}]} $
  • [26] Z.G. Liu, Two q-difference equations and q-operator identities, J. Differ. Equ. Appl., 16(11) (2010), 1293–1307. $ \href{https://doi.org/10.1080/10236190902810385}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-78149366394&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+%24q%24-difference+equations+and+%24q%24-operator+identities%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000283879100004}{[\mbox{Web of Science}]} $
  • [27] Z.G. Liu, An extension of the non-terminating 6f5 summation and the Askey-Wilson polynomials, J. Differ. Equ. Appl. 17(10) (2011), 1401– 1411. $ \href{https://doi.org/10.1080/10236190903530735}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80053013753&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22summation+and+the+Askey-Wilson+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000295120800001}{[\mbox{Web of Science}]} $
  • [28] Z.G. Liu, On the q-partial differential equations and q-series, in: The Legacy of Srinivasa Ramanujan, in: Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan Math. Soc., Mysore, (2013), 213–250. $\href{https://doi.org/10.48550/arXiv.1805.02132}{[\mbox{CrossRef}]} $
  • [29] Z.G. Liu, A q-extension of a partial differential equation and the Hahn polynomials, Ramanujan J., 38(3) (2015), 481–501. $ \href{https://doi.org/10.1007/s11139-014-9632-1}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84947128473&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+%24q%24-extension+of+a+partial+differential+equation+and+the+Hahn+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000364969700003}{[\mbox{Web of Science}]} $
  • [30] Z.G. Liu, On a system of partial differential equations and the bivariate Hermite polynomials, J. Math. Anal. Appl., 45(1) (2017), 1–17. $\href{https://doi.org/10.1016/j.jmaa.2017.04.066}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85018722466&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+system+of+partial+differential+equations+and+the+bivariate+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000402450900001}{[\mbox{Web of Science}]} $
  • [31] Z.G. Liu, On the complex Hermite polynomials, Filomat, 34(2) (2020), 409–420. $ \href{https://doi.org/10.2298/FIL2002409L}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096915507&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+complex+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000595329700014}{[\mbox{Web of Science}]} $
  • [32] Z.G. Liu, A multiple q-translation formula and its implications, Acta Math. Sin., 39(12) (2023), 2338–2363. $ \href{https://doi.org/10.1007/s10114-023-2237-0}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85170224261&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+multiple+%24q%24-translation+formula+and+its+implications%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001071738200016}{[\mbox{Web of Science}]} $
  • [33] Z.G. Liu, A multiple q-exponential differential operational identity, Acta Math. Sci. Ser. B, 43(6)(2023), 2449–2470. $ \href{https://doi.org/10.1007/s10473-023-0608-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85175813592&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+multiple+%24q%24-exponential+differential+operational+identity%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001103749200012}{[\mbox{Web of Science}]} $
  • [34] D.W. Niu and L. Li, q-Laguerre polynomials and related q-partial differential equations, J. Diff. Equ. Appl. 24(3) (2018), 375–390. $\href{https://doi.org/10.1080/10236198.2017.1409221}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85037973429&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-Laguerre+polynomials+and+related+%24q%24-partial+differential+equations%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000423855600004}{[\mbox{Web of Science}]} $
  • [35] J. Cao, A note on generalized q-difference equations for q-beta and Andrews-Askey integral, J. Math. Anal. Appl. 412(2) (2014), 841–851. $\href{https://doi.org/10.1016/j.jmaa.2013.11.027}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84891502262&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+generalized+%24q%24-difference+equations+for+%24q%24-beta+and+Andrews-Askey+integral%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000330419500020}{[\mbox{Web of Science}]} $
  • [36] J. Cao, Homogeneous q-difference equations and generating functions for q-hypergeometric polynomials, Ramanujan J. 40(1) (2016), 177– 192. $ \href{http://dx.doi.org/10.1007%2Fs11139-015-9676-x}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84923338102&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-difference+equations+and+generating+functions+for+%24q%24-hypergeometric+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} $
  • [37] J. Cao, Homogeneous q-partial difference equations and some applications, Adv. Appl. Math. 84 (2017), 47–72. $ \href{https://doi.org/10.1016/j.aam.2016.11.001}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84998953943&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-partial+difference+equations+and+some+applications%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393264600004}{[\mbox{Web of Science}]} $
  • [38] J. Cao and D.W. Niu, A note on q-difference equations for Cigler’s polynomials, J. Diff. Equ. Appl. 22(12) (2016), 1880–1892. $ \href{https://doi.org/10.1080/10236198.2016.1250750}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84994175603&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+%24q%24-difference+equations+for+Cigler%27s+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393123900007}{[\mbox{Web of Science}]} $
  • [39] S. Arjika, q-difference equations for homogeneous q-difference operators and their applications, J. Difference Equ. Appl. 26(7) (2020), 987–999. $ \href{https://doi.org/10.1080/10236198.2020.1804888}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85089467901&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24q%24-difference+equations+for+homogeneous+%24q%24-difference+operators+and+their+applications%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000559864400001}{[\mbox{Web of Science}]} $
  • [40] M.A. Abdlhusein, Two operator representations for the trivariate q-polynomials and Hahn polynomials, Ramanujan J., 40(3) (2016), 491– 509. $ \href{https://doi.org/10.1007/s11139-015-9731-7}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84946882220&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+operator+representations+for+the+trivariate%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000379866300004}{[\mbox{Web of Science}]} $
  • [41] J. Cao, T.X. Cai and L.P. Cai, A note on q-partial differential equations for generalized q-2D Hermite polynomials, Progress on difference equations and discrete dynamical systems, 201–211, Springer Proc. Math. Stat., 341, Springer, Cham, (2020). $ \href{https://doi.org/10.1007/978-3-030-60107-2_8}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85101536544&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+%24q%24-partial+differential+equations+for+generalized+%24q%24-2D+Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} $
  • [42] J. Cao, H.L. Zhou and S. Arjika, Generalized homogeneous q-difference equations for q-polynomials and their applications to generating functions and fractional q-integrals, Adv. Differ. Equ., 2021(1) (2021), 329. $ \href{https://doi.org/10.1186/s13662-021-03484-9}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85109789708&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+homogeneous+%24q%24-difference+equations+for+%24q%24-polynomials+and+their+applications+to+generating+functions+and+fractional+%24q%24-integrals%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000672668900002}{[\mbox{Web of Science}]} $
  • [43] Z.Y. Jia, Homogeneous q-difference equations and generating functions for the generalized 2D-Hermite polynomials, Taiwanese J. Math. 25(1) (2021), 45–63. $\href{https://doi.org/10.11650/tjm/200804}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85100784193&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Homogeneous+%24q%24-difference+equations+and+generating+functions+for+the+generalized+2D-Hermite+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000629107000003}{[\mbox{Web of Science}]} $
  • [44] H.W.J. Zhang, (q;c)-derivative operator and its applications, Adv. Appl. Math. 121 (2020), 102081, 23 pp. $ \href{https://doi.org/10.1016/j.aam.2020.102081}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000577542300003}{[\mbox{Web of Science}]} $
  • [45] S. Arjika and M.K. Mahaman, q-difference equation for generalized trivariate q-Hahn polynomials, Appl. Anal. Optim. 5(1) (2021), 1–11. $ \href{http://yokohamapublishers.jp/online2/opaao/vol5/p1.html}{[Web]} $
  • [46] J. Cao, B.B. Xu and S. Arjika, A note on generalized q-difference equations for general Al-Salam-Carlitz polynomials, Adv. Differ. Equ.,2020(1) (2020), 668. $ \href{https://doi.org/10.1186/s13662-020-03133-7}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85095110366&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+generalized+%24q%24-difference+equations+for+general+Al-Salam-Carlitz+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000619928500002}{[\mbox{Web of Science}]} $
  • [47] J. Cao, J.Y. Huang, M. Fadel and S. Arjika, A review of q-difference equations for Al-Salam-Carlitz polynomials and applications toU(n+1) type generating functions and Ramanujan’s integrals, Mathematics. 11(7) (2023), 1655. $ \href{https://doi.org/10.3390/math11071655}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85152798084&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+review+of+%24q%24-difference+equations+for+Al-Salam-Carlitz+polynomials+and+applications+to+%24U%28n%2B1%29%24+type+generating+functions+and+Ramanujan%27s+integrals%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000968779500001}{[\mbox{Web of Science}]} $
  • [48] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genu¨gen, Math. Nachr. 2(1-2) (1949), 4–34. $ \href{http://dx.doi.org/10.1002/mana.19490020103}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0003124908&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Uber+Orthogonalpolynome%2C+die+q-Differenzengleichungen+gen%C3%BCgen%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=1}{[\mbox{Scopus}]} $
  • [49] R. Koekoek and R.F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Tech. Rep. 98–17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1998. $ \href{https://fa.ewi.tudelft.nl/~koekoek/askey/}{[Web]} $
  • [50] R. Askey, Limits of some q-Laguerre polynomials, J. Approx. Theory. 46(3) (1986), 213–216. $ \href{https://doi.org/10.1016/0021-9045(86)90062-6}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0013380243&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Limits+of+some+%24q%24-Laguerre+polynomials%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1986C591100001}{[\mbox{Web of Science}]} $
  • [51] B. Malgrange, Lectures on Functions of Several Complex Variables, Springer-Verlag, Berlin, 1984. $ \href{https://doi.org/10.1007/978-3-319-11511-5}{[\mbox{CrossRef}]} $
  • [52] J.S. Christiansen, The moment problem associated with the q-Laguerre polynomials, Constr. Approx. 19(1)(2003), 1–22. $ \href{https://doi.org/10.1007/s00365-001-0017-5}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179482600001}{[\mbox{Web of Science}]} $
  • [53] M.E.H. Ismail and M. Rahman, The q-Laguerre polynomials and related moment problems, J. Math. Anal. Appl. 218(1) (1998), 155–174. $ \href{https://doi.org/10.1006/jmaa.1997.5771}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000072001000012}{[\mbox{Web of Science}]} $
  • [54] D.S. Moak, The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81(1) (1981), 20–47. $ \href{https://doi.org/10.1016/0022-247X(81)90048-2}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0003009316&origin=resultslist&sort=plf-f&src=s&sid=c06d561f1acc2eac1727c85d5bdb36d3&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+%24q%24-analogue+of+the+Laguerre+polynomials%22%29&sl=103&sessionSearchId=c06d561f1acc2eac1727c85d5bdb36d3&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1981LU91300003}{[\mbox{Web of Science}]} $
  • [55] J. Taylor, Several Complex Variables with Connections to Algebraic Qeometry and Lie Qroups, Graduate Studies in Mathematics, 46, American Mathematical Society, Providence, 2002.
  • [56] G.E. Andrews and R. Askey, Enumeration of Partitions: The Role of Eulerian Series and q-Orthogonal Polynomials, in Higher Combinatories (M. Aigner, Ed.), 3–26, Reidel, Boston, MA (1977). $ \href{https://doi.org/10.1007/978-94-010-1220-1_1}{[\mbox{CrossRef}]} $
  • [57] G.E. Andrews and R. Askey, Classical orthogonal polynomials, in: C. Brezinski et al., Eds., PolynBmes Orthogonaux et Applications, Lecture Notes in Math. 1171 (Springer, New York, 1985), 36–62. $ \href{https://doi.org/10.1007/BFb0076530}{[\mbox{CrossRef}]} $
  • [58] G.E. Andrews, An introduction to Ramanujan’s ”lost” notebook, Amer. Math. Monthly 86(2) (1979), 89–108. $\href{https://doi.org/10.2307/2321943}{[\mbox{CrossRef}]} $
  • [59] R. Askey, Two integrals of Ramanujan, Proc. Amer. Math. Soc. 85(2) (1982), 192–194. $ \href{https://doi.org/10.2307/2044279}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966238721&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Two+integrals+of+Ramanujan%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=1}{[\mbox{Scopus}]} $
  • [60] G.E. Andrews and R. Askey, Another q-extension of the beta function, Proc. Amer. Math. Soc. 81(1) (1981), 97–100. $ \href{https://doi.org/10.2307/2043995}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84966253958&origin=resultslist&sort=plf-f&src=s&sid=17f01c644f2f930366c8206c1af8bd5c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Another+%24q%24-extension+of+the+beta+function%22%29&sl=46&sessionSearchId=17f01c644f2f930366c8206c1af8bd5c&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1981KY78700021}{[\mbox{Web of Science}]} $
  • [61] V.Y.B. Chen and N.S.S. Gu, The Cauchy operator for basic hypergeometric series, Adv. Appl. Math. 41(2) (2008), 177–196. $ \href{https://doi.org/10.1016/j.aam.2007.08.001}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-43449110068&origin=resultslist&sort=plf-f&src=s&sid=091c2ace3e7c91bf2f9e1975aebaa5be&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+Cauchy+operator+for+basic+hypergeometric+series%22%29&sl=66&sessionSearchId=091c2ace3e7c91bf2f9e1975aebaa5be&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000257149000003}{[\mbox{Web of Science}]} $
There are 61 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Qi Bao 0000-0001-9636-5829

Dunkun Yang 0000-0003-1024-6330

Early Pub Date July 2, 2024
Publication Date June 30, 2024
Submission Date September 23, 2023
Acceptance Date May 23, 2024
Published in Issue Year 2024

Cite

APA Bao, Q., & Yang, D. (2024). Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials. Fundamental Journal of Mathematics and Applications, 7(2), 59-76. https://doi.org/10.33401/fujma.1365120
AMA Bao Q, Yang D. Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials. Fundam. J. Math. Appl. June 2024;7(2):59-76. doi:10.33401/fujma.1365120
Chicago Bao, Qi, and Dunkun Yang. “Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials”. Fundamental Journal of Mathematics and Applications 7, no. 2 (June 2024): 59-76. https://doi.org/10.33401/fujma.1365120.
EndNote Bao Q, Yang D (June 1, 2024) Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials. Fundamental Journal of Mathematics and Applications 7 2 59–76.
IEEE Q. Bao and D. Yang, “Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials”, Fundam. J. Math. Appl., vol. 7, no. 2, pp. 59–76, 2024, doi: 10.33401/fujma.1365120.
ISNAD Bao, Qi - Yang, Dunkun. “Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials”. Fundamental Journal of Mathematics and Applications 7/2 (June 2024), 59-76. https://doi.org/10.33401/fujma.1365120.
JAMA Bao Q, Yang D. Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials. Fundam. J. Math. Appl. 2024;7:59–76.
MLA Bao, Qi and Dunkun Yang. “Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 2, 2024, pp. 59-76, doi:10.33401/fujma.1365120.
Vancouver Bao Q, Yang D. Notes on $q$-Partial Differential Equations for $q$-Laguerre Polynomials and Little $q$-Jacobi Polynomials. Fundam. J. Math. Appl. 2024;7(2):59-76.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a