Research Article
BibTex RIS Cite
Year 2018, , 12 - 17, 30.06.2018
https://doi.org/10.33401/fujma.407148

Abstract

References

  • [1] S. Asawasamrit, KK-isomorphism and its properties, Int. J. Pure Appl. Math. 78 (2012), no. 1, 65–73.
  • [2] K. H. Dar and M. Akram, On K-homomorphisms of K-algebras, Int. Math. Forum 2 (2007), no. 46, 2283–2293.
  • [3] J. Hao and C. X. Li, On ideals of an ideal in a BCI-algebra, Sci. Math. Jpn. (in Editione Electronica) 10 (2004), no. 16, 493–500.
  • [4] Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983), 313–320.
  • [5] A. Iampan, The UP-isomorphism theorems for UP-algebras, Manuscript submitted for publication, April 2015.
  • [6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017), no. 1, 35–54.
  • [7] Y. Imai and K. Is´eki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966), no. 1, 19–22.
  • [8] K. Is´eki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), no. 1, 26–29.
  • [9] Y. B. Jun, S. M. Hong, X. L. Xin, and E. H. Roh, Chinese remainder theorems in BCI-algebras, Soochow J. Math. 24 (1998), no. 3, 219–230.
  • [10] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (2011), no. 2, 39–44.
  • [11] C. B. Kim and H. S. Kim, On BG-algebras, Demonstr. Math. 41 (2008), no. 3, 497–505.
  • [12] K. H. Kim, On structure of KS-semigroup, Int. Math. Forum 1 (2006), no. 2, 67–76.
  • [13] J. S. Paradero-Vilela and M. Cawi, On KS-semigroup homomorphism, Int. Math. Forum 4 (2009), no. 23, 1129–1138.
  • [14] J. K. Park, W. H. Shim, and E. H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001), no. 2, 153–160.
  • [15] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (2009), no. 1, 54–57.

The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism

Year 2018, , 12 - 17, 30.06.2018
https://doi.org/10.33401/fujma.407148

Abstract

The aim of this paper is to construct the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism. We also give an application of the theorem to the first, second, and third UP-isomorphism theorems in UP-algebras.

References

  • [1] S. Asawasamrit, KK-isomorphism and its properties, Int. J. Pure Appl. Math. 78 (2012), no. 1, 65–73.
  • [2] K. H. Dar and M. Akram, On K-homomorphisms of K-algebras, Int. Math. Forum 2 (2007), no. 46, 2283–2293.
  • [3] J. Hao and C. X. Li, On ideals of an ideal in a BCI-algebra, Sci. Math. Jpn. (in Editione Electronica) 10 (2004), no. 16, 493–500.
  • [4] Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983), 313–320.
  • [5] A. Iampan, The UP-isomorphism theorems for UP-algebras, Manuscript submitted for publication, April 2015.
  • [6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017), no. 1, 35–54.
  • [7] Y. Imai and K. Is´eki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966), no. 1, 19–22.
  • [8] K. Is´eki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), no. 1, 26–29.
  • [9] Y. B. Jun, S. M. Hong, X. L. Xin, and E. H. Roh, Chinese remainder theorems in BCI-algebras, Soochow J. Math. 24 (1998), no. 3, 219–230.
  • [10] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (2011), no. 2, 39–44.
  • [11] C. B. Kim and H. S. Kim, On BG-algebras, Demonstr. Math. 41 (2008), no. 3, 497–505.
  • [12] K. H. Kim, On structure of KS-semigroup, Int. Math. Forum 1 (2006), no. 2, 67–76.
  • [13] J. S. Paradero-Vilela and M. Cawi, On KS-semigroup homomorphism, Int. Math. Forum 4 (2009), no. 23, 1129–1138.
  • [14] J. K. Park, W. H. Shim, and E. H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001), no. 2, 153–160.
  • [15] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (2009), no. 1, 54–57.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Phakawat Mosrijai

Akarachai Satirad

Aiyared Iampan 0000-0002-0475-3320

Publication Date June 30, 2018
Submission Date March 16, 2018
Acceptance Date May 19, 2018
Published in Issue Year 2018

Cite

APA Mosrijai, P., Satirad, A., & Iampan, A. (2018). The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism. Fundamental Journal of Mathematics and Applications, 1(1), 12-17. https://doi.org/10.33401/fujma.407148
AMA Mosrijai P, Satirad A, Iampan A. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism. Fundam. J. Math. Appl. June 2018;1(1):12-17. doi:10.33401/fujma.407148
Chicago Mosrijai, Phakawat, Akarachai Satirad, and Aiyared Iampan. “The New UP-Isomorphism Theorems for UP-Algebras in the Meaning of the Congruence Determined by a UP-Homomorphism”. Fundamental Journal of Mathematics and Applications 1, no. 1 (June 2018): 12-17. https://doi.org/10.33401/fujma.407148.
EndNote Mosrijai P, Satirad A, Iampan A (June 1, 2018) The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism. Fundamental Journal of Mathematics and Applications 1 1 12–17.
IEEE P. Mosrijai, A. Satirad, and A. Iampan, “The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism”, Fundam. J. Math. Appl., vol. 1, no. 1, pp. 12–17, 2018, doi: 10.33401/fujma.407148.
ISNAD Mosrijai, Phakawat et al. “The New UP-Isomorphism Theorems for UP-Algebras in the Meaning of the Congruence Determined by a UP-Homomorphism”. Fundamental Journal of Mathematics and Applications 1/1 (June 2018), 12-17. https://doi.org/10.33401/fujma.407148.
JAMA Mosrijai P, Satirad A, Iampan A. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism. Fundam. J. Math. Appl. 2018;1:12–17.
MLA Mosrijai, Phakawat et al. “The New UP-Isomorphism Theorems for UP-Algebras in the Meaning of the Congruence Determined by a UP-Homomorphism”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 12-17, doi:10.33401/fujma.407148.
Vancouver Mosrijai P, Satirad A, Iampan A. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism. Fundam. J. Math. Appl. 2018;1(1):12-7.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a