Research Article
BibTex RIS Cite
Year 2019, , 56 - 62, 17.06.2019
https://doi.org/10.33401/fujma.541721

Abstract

References

  • [1] B. Choudhary and S. Nanda, Functional Analysis with Applications, Wiley, New Delhi (1989).
  • [2] W.H. Ruckle, Sequence spaces Pitman Publishing, Toronto (1981).
  • [3] B. Altay and H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math. 30 (2006), 209-220.
  • [4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math. 45 (1990), 107-110.
  • [5] A. Edelman and G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly 111 (2004), 189-197.
  • [6] C. Lay David, Linear Algebra and Its Applications: 4th Ed. Boston: Pearson, Addison-Wesley, (2012).
  • [7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (398) (1972), 325--327.
  • [8] H. Polat, Some New Pascal Sequence Spaces, Fundamental Journal of Mathematics and Applications 1 (2018), 61-68.
  • [9] H. Kızmaz, On certain sequence space, Canad. Math. Bull. 24(2) (1981), 169 176.
  • [10] R. Çolak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math J, 26(3), (1997), 483-492.
  • [11] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator on the sequence space l_{p}; (0<p<1), Commun. Math. Anal. 2(2)(2007), 1-11.
  • [12] V. Karakaya and H. Polat, Some New Paranormed Sequence Spaces de ned by Euler and Difference Operators, Acta Sci. Math(Szeged), 76(2010), 87-100.
  • [13] H. Polat and F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed. 27B(2) (2007), 254- 266.
  • [14] H.Polat, V.Karakaya and N. Şimşek, Difference Sequence Spaces Derived by Generalized Weighted Mean, Applied Mathematics Letters 24 (2011), 608-614.
  • [15] M. Et and M. Başarır, On some genaralized difference sequence spaces, Period. Math. Hung. 35 (3) (1997), 169- 175.
  • [16] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge (1988).
  • [17] D. J.H. Garling, The α-, β- and γ-duality of Sequence Spaces, Proc. Comb. Phil. Soc. 63 (1967), 963-981.
  • [18] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisubersict, Math. Z., 154(1977), 1-16.

Difference Sequence Spaces Derived by using Pascal Transform

Year 2019, , 56 - 62, 17.06.2019
https://doi.org/10.33401/fujma.541721

Abstract

The essential goal of this manuscript is to investigate some novel sequence spaces of $p_{\infty }\left( \Delta \right) $, $p_{c}\left( \Delta \right) $ and $p_{0}\left( \Delta \right) $ which are comprised by all sequence spaces whose differences are in Pascal sequence spaces $p_{\infty }$, $p_{c}$ and $p_{0}$, respectively. Furthermore, we determine both $\gamma $-, $\beta $-, $\alpha $- duals of newly defined difference sequence spaces of $p_{\infty }\left( \Delta \right) $, $% p_{c}\left( \Delta \right) $ and $p_{0}\left( \Delta \right) $. We also obtain bases of the newly defined difference sequence spaces of $p_{c}\left( \Delta \right) $ and $p_{0}\left( \Delta \right) $. Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes $(p_{c}\left( \Delta \right) :l_{\infty })$ and $(p_{c}\left( \Delta \right) :c)$ are characterized.

References

  • [1] B. Choudhary and S. Nanda, Functional Analysis with Applications, Wiley, New Delhi (1989).
  • [2] W.H. Ruckle, Sequence spaces Pitman Publishing, Toronto (1981).
  • [3] B. Altay and H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math. 30 (2006), 209-220.
  • [4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math. 45 (1990), 107-110.
  • [5] A. Edelman and G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly 111 (2004), 189-197.
  • [6] C. Lay David, Linear Algebra and Its Applications: 4th Ed. Boston: Pearson, Addison-Wesley, (2012).
  • [7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (398) (1972), 325--327.
  • [8] H. Polat, Some New Pascal Sequence Spaces, Fundamental Journal of Mathematics and Applications 1 (2018), 61-68.
  • [9] H. Kızmaz, On certain sequence space, Canad. Math. Bull. 24(2) (1981), 169 176.
  • [10] R. Çolak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math J, 26(3), (1997), 483-492.
  • [11] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator on the sequence space l_{p}; (0<p<1), Commun. Math. Anal. 2(2)(2007), 1-11.
  • [12] V. Karakaya and H. Polat, Some New Paranormed Sequence Spaces de ned by Euler and Difference Operators, Acta Sci. Math(Szeged), 76(2010), 87-100.
  • [13] H. Polat and F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed. 27B(2) (2007), 254- 266.
  • [14] H.Polat, V.Karakaya and N. Şimşek, Difference Sequence Spaces Derived by Generalized Weighted Mean, Applied Mathematics Letters 24 (2011), 608-614.
  • [15] M. Et and M. Başarır, On some genaralized difference sequence spaces, Period. Math. Hung. 35 (3) (1997), 169- 175.
  • [16] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge (1988).
  • [17] D. J.H. Garling, The α-, β- and γ-duality of Sequence Spaces, Proc. Comb. Phil. Soc. 63 (1967), 963-981.
  • [18] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisubersict, Math. Z., 154(1977), 1-16.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Saadettin Aydın This is me 0000-0002-9559-0730

Harun Polat 0000-0003-3955-9197

Publication Date June 17, 2019
Submission Date March 19, 2019
Acceptance Date May 28, 2019
Published in Issue Year 2019

Cite

APA Aydın, S., & Polat, H. (2019). Difference Sequence Spaces Derived by using Pascal Transform. Fundamental Journal of Mathematics and Applications, 2(1), 56-62. https://doi.org/10.33401/fujma.541721
AMA Aydın S, Polat H. Difference Sequence Spaces Derived by using Pascal Transform. Fundam. J. Math. Appl. June 2019;2(1):56-62. doi:10.33401/fujma.541721
Chicago Aydın, Saadettin, and Harun Polat. “Difference Sequence Spaces Derived by Using Pascal Transform”. Fundamental Journal of Mathematics and Applications 2, no. 1 (June 2019): 56-62. https://doi.org/10.33401/fujma.541721.
EndNote Aydın S, Polat H (June 1, 2019) Difference Sequence Spaces Derived by using Pascal Transform. Fundamental Journal of Mathematics and Applications 2 1 56–62.
IEEE S. Aydın and H. Polat, “Difference Sequence Spaces Derived by using Pascal Transform”, Fundam. J. Math. Appl., vol. 2, no. 1, pp. 56–62, 2019, doi: 10.33401/fujma.541721.
ISNAD Aydın, Saadettin - Polat, Harun. “Difference Sequence Spaces Derived by Using Pascal Transform”. Fundamental Journal of Mathematics and Applications 2/1 (June 2019), 56-62. https://doi.org/10.33401/fujma.541721.
JAMA Aydın S, Polat H. Difference Sequence Spaces Derived by using Pascal Transform. Fundam. J. Math. Appl. 2019;2:56–62.
MLA Aydın, Saadettin and Harun Polat. “Difference Sequence Spaces Derived by Using Pascal Transform”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 1, 2019, pp. 56-62, doi:10.33401/fujma.541721.
Vancouver Aydın S, Polat H. Difference Sequence Spaces Derived by using Pascal Transform. Fundam. J. Math. Appl. 2019;2(1):56-62.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a