Research Article
BibTex RIS Cite
Year 2019, , 180 - 185, 20.12.2019
https://doi.org/10.33401/fujma.587740

Abstract

References

  • [1] T. Wolf, A comparison of four approaches to the calculation of conservation laws Eur. J. Appl. Math., 13(2) (2002), 129-152.
  • [2] P. D. Lax, Shock wave and entropy, in Contributions to Functional Analysis, ed. EA Zarantonello, Academic Press, New York, 1971.
  • [3] R. J. DiPerna, Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. Ration. Mech. An., 64(1) (1977), 1-46.
  • [4] B. A. Bilby, K. J. Miller, J. R. Willis, Fundamentals of Deformation and Fracture, Cambridge University Press, Cambridge, 1985.
  • [5] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993.
  • [6] P. S. Laplace, Traite de Mecanique Celeste, Tome I, Paris, 1798.
  • [7] E. Noether, Invariante variations probleme, Nachr. Konig. Gesell. Wiss. Gottingen Math. Phys. Kl. Heft 2 (1918), 235-257, English translation in Transport Theory Statist. Phys. 1(3) (1971), 186-207.
  • [8] H. Steudel, Uber die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssatzen, Z. Naturforsch., 17A(2) (1962), 129-132.
  • [9] Ü. Göktaş, W. Hereman, Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symb. Comput., 24(5) (1997), 591-622.
  • [10] P. J. Adams, W. Hereman, TransPDEDensityFlux.m: Symbolic computation of conserved densities and fluxes for systems of partial differential equations with transcendental nonlinearities, Scientific Software, 2002.
  • [11] L. D. Poole , W. Hereman, ConservationLawsMD.m: A Mathematica package for the symbolic computation of conservation laws of polynomial systems of nonlinear PDEs in multiple space dimensions, Scientific Software, 2009, available at http://inside.mines.edu/~whereman/.
  • [12] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Commun., 176(1) (2007), 48-61.
  • [13] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Eng. Math., 66(1-3) (2010), 153-173.
  • [14] I. M. Anderson, E. S. Cheb-Terrab, Differential geometry package, Maple Online Help, 2009.
  • [15] T. M. Rocha Filho, A. Figueiredo, [SADE] A Maple package for the symmetry analysis of differential equations, Comput. Phys. Commun., 182(2) 2011), 467-476.
  • [16] B. Xia, Z. Qiao, J. Li, An integrable system with peakon, complex peakon, weak kink, and kink peakon interactional solutions, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 292-306.
  • [17] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of symmetry methods to partial differential equations (First Edition), Springer, New York, 2010. [18] R. Naz, Symmetry solutions and conservation laws for some partial differential equations in fluid mechanics, Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2008.

Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity

Year 2019, , 180 - 185, 20.12.2019
https://doi.org/10.33401/fujma.587740

Abstract

In this paper, the conservation laws for a model with both quadratic and cubic nonlinearity 

\begin{eqnarray*}

m_{t}=bu_{x}+\frac{1}{2}a\left[ \left( u^{2}-u_{x}^{2}\right) m\right] _{x}+%

\frac{1}{2}c\left( 2m\cdot u_{x}+m_{x}\cdot u\right) ;\text{ \ \ }m=u-u_{xx}

\end{eqnarray*}%

are considered for the six cases of coefficients. By using a variational derivative approach, conservation laws were constructed. The computations to derive  multipliers and conservation law fluxes are conducted by using a Maple-based package which is called GeM.

References

  • [1] T. Wolf, A comparison of four approaches to the calculation of conservation laws Eur. J. Appl. Math., 13(2) (2002), 129-152.
  • [2] P. D. Lax, Shock wave and entropy, in Contributions to Functional Analysis, ed. EA Zarantonello, Academic Press, New York, 1971.
  • [3] R. J. DiPerna, Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. Ration. Mech. An., 64(1) (1977), 1-46.
  • [4] B. A. Bilby, K. J. Miller, J. R. Willis, Fundamentals of Deformation and Fracture, Cambridge University Press, Cambridge, 1985.
  • [5] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993.
  • [6] P. S. Laplace, Traite de Mecanique Celeste, Tome I, Paris, 1798.
  • [7] E. Noether, Invariante variations probleme, Nachr. Konig. Gesell. Wiss. Gottingen Math. Phys. Kl. Heft 2 (1918), 235-257, English translation in Transport Theory Statist. Phys. 1(3) (1971), 186-207.
  • [8] H. Steudel, Uber die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssatzen, Z. Naturforsch., 17A(2) (1962), 129-132.
  • [9] Ü. Göktaş, W. Hereman, Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symb. Comput., 24(5) (1997), 591-622.
  • [10] P. J. Adams, W. Hereman, TransPDEDensityFlux.m: Symbolic computation of conserved densities and fluxes for systems of partial differential equations with transcendental nonlinearities, Scientific Software, 2002.
  • [11] L. D. Poole , W. Hereman, ConservationLawsMD.m: A Mathematica package for the symbolic computation of conservation laws of polynomial systems of nonlinear PDEs in multiple space dimensions, Scientific Software, 2009, available at http://inside.mines.edu/~whereman/.
  • [12] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Commun., 176(1) (2007), 48-61.
  • [13] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Eng. Math., 66(1-3) (2010), 153-173.
  • [14] I. M. Anderson, E. S. Cheb-Terrab, Differential geometry package, Maple Online Help, 2009.
  • [15] T. M. Rocha Filho, A. Figueiredo, [SADE] A Maple package for the symmetry analysis of differential equations, Comput. Phys. Commun., 182(2) 2011), 467-476.
  • [16] B. Xia, Z. Qiao, J. Li, An integrable system with peakon, complex peakon, weak kink, and kink peakon interactional solutions, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 292-306.
  • [17] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of symmetry methods to partial differential equations (First Edition), Springer, New York, 2010. [18] R. Naz, Symmetry solutions and conservation laws for some partial differential equations in fluid mechanics, Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2008.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hatice Taşkesen 0000-0003-1058-0507

Mohanad Alaloush 0000-0002-2861-8895

Publication Date December 20, 2019
Submission Date July 5, 2019
Acceptance Date October 2, 2019
Published in Issue Year 2019

Cite

APA Taşkesen, H., & Alaloush, M. (2019). Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity. Fundamental Journal of Mathematics and Applications, 2(2), 180-185. https://doi.org/10.33401/fujma.587740
AMA Taşkesen H, Alaloush M. Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity. Fundam. J. Math. Appl. December 2019;2(2):180-185. doi:10.33401/fujma.587740
Chicago Taşkesen, Hatice, and Mohanad Alaloush. “Conservation Laws for a Model With Both Cubic and Quadratic Nonlinearity”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 180-85. https://doi.org/10.33401/fujma.587740.
EndNote Taşkesen H, Alaloush M (December 1, 2019) Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity. Fundamental Journal of Mathematics and Applications 2 2 180–185.
IEEE H. Taşkesen and M. Alaloush, “Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 180–185, 2019, doi: 10.33401/fujma.587740.
ISNAD Taşkesen, Hatice - Alaloush, Mohanad. “Conservation Laws for a Model With Both Cubic and Quadratic Nonlinearity”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 180-185. https://doi.org/10.33401/fujma.587740.
JAMA Taşkesen H, Alaloush M. Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity. Fundam. J. Math. Appl. 2019;2:180–185.
MLA Taşkesen, Hatice and Mohanad Alaloush. “Conservation Laws for a Model With Both Cubic and Quadratic Nonlinearity”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 180-5, doi:10.33401/fujma.587740.
Vancouver Taşkesen H, Alaloush M. Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity. Fundam. J. Math. Appl. 2019;2(2):180-5.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a