Research Article
BibTex RIS Cite

Numerical Oscillation Analysis for Gompertz Equation with One Delay

Year 2020, , 1 - 7, 10.06.2020
https://doi.org/10.33401/fujma.623500

Abstract

This paper concerns with the oscillation of numerical solutions of a kind of nonlinear delay differential equation proposed by Benjamin Gompertz, this equation usually be used to describe the population dynamics and tumour growth. We obtained some conditions under which the numerical solutions are oscillatory. The non-oscillatory behaviors of numerical solutions are also analyzed. Numerical examples are given to test our theoretical results.

Supporting Institution

Natural Science Foundation of Guangdong Province

Project Number

2017A030313031

References

  • [1] J. Dzurina, I. Jadlovska, Oscillation theorems for fourth-order delay differential equations with a negative middle term, Math. Meth. Appl. Sci., 40 (2017), 7830-7842.
  • [2] K. M. Chudinov, On exact sufficient oscillation conditions for solutions of linear differential and difference equations of the first order with after effects, Russian Math., 62 (2018), 79-84.
  • [3] J. F. Gao, M. F. Song, M. Z. Liu, Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics, Math. Model. Anal., 16 (2011), 365-375.
  • [4] J. F. Gao, M. F. Song, Oscillation analysis of numerical solutions for nonlinear delay differential equations of hematopoiesis with unimodal production rate, Appl. Math. Comput., 264 (2015), 72-84.
  • [5] Q. Wang, Oscillation analysis of q-methods for the Nicholson’s blowflies model, Math. Meth. Appl. Sci., 39 (2016), 941-948.
  • [6] Y. Z. Wang, J. F. Gao, Oscillation analysis of numerical solutions for delay differential equations with real coefficients, J. Comput. Appl. Math., 337 (2018), 73-86.
  • [7] M. Bodnar, U. Foryss, Three types of simple DDE’s describing tumor growth, J. Biol. Syst., 15 (2007), 453-471.
  • [8] L. E. B. Cabrales, A. R. Aguilera, R. P. Jiméenéz, et al., Mathematical modeling of tumor growth in mice following low-level direct electric current, Math. Comput. Simulat., 78 (2008), 112-120.
  • [9] B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. T. R. Soc. B, 115 (1825), 513-583.
  • [10] C. P. Winsor, The Gompertz Curve as a Growth Curve, Proc. Natl Acad. Sci., 18 (1932), 1-8.
  • [11] L. Ferrante, S. Bompadre, L. P. Leone, Parameter estimation in a Gompertzian stochastic model for tumor growth, Biometrics, 56 (2000), 1076-1081.
  • [12] M. J. Piotrowska, U. Forys, The nature of Hopf bifurcation for the Gompertz model with delays, Math. Comput. Model., 54 (2011), 2183-2198.
  • [13] M. J. Piotrowska, U. Forys, Analysis of the Hopf bifurcation for the family of angiogenesis models. J. Math. Anal. Appl., 382 (2011), 180-203.
  • [14] M. Bodnar, M. J. Piotrowska, U. Forys, Gompertz model with delays and treatment: Mathematical analysis, Math. Biosci. Eng., 10 (2013), 551-563.
  • [15] I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations: with Applications, Oxford University Press, 1991.
  • [16] M. H. Song, Z. W. Yang, M. Z. Liu, Stability of q-methods for advanced differential equations with piecewise continuous arguments, Comput. Math. Appl., 49 (2005), 1295-1301.
Year 2020, , 1 - 7, 10.06.2020
https://doi.org/10.33401/fujma.623500

Abstract

Project Number

2017A030313031

References

  • [1] J. Dzurina, I. Jadlovska, Oscillation theorems for fourth-order delay differential equations with a negative middle term, Math. Meth. Appl. Sci., 40 (2017), 7830-7842.
  • [2] K. M. Chudinov, On exact sufficient oscillation conditions for solutions of linear differential and difference equations of the first order with after effects, Russian Math., 62 (2018), 79-84.
  • [3] J. F. Gao, M. F. Song, M. Z. Liu, Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics, Math. Model. Anal., 16 (2011), 365-375.
  • [4] J. F. Gao, M. F. Song, Oscillation analysis of numerical solutions for nonlinear delay differential equations of hematopoiesis with unimodal production rate, Appl. Math. Comput., 264 (2015), 72-84.
  • [5] Q. Wang, Oscillation analysis of q-methods for the Nicholson’s blowflies model, Math. Meth. Appl. Sci., 39 (2016), 941-948.
  • [6] Y. Z. Wang, J. F. Gao, Oscillation analysis of numerical solutions for delay differential equations with real coefficients, J. Comput. Appl. Math., 337 (2018), 73-86.
  • [7] M. Bodnar, U. Foryss, Three types of simple DDE’s describing tumor growth, J. Biol. Syst., 15 (2007), 453-471.
  • [8] L. E. B. Cabrales, A. R. Aguilera, R. P. Jiméenéz, et al., Mathematical modeling of tumor growth in mice following low-level direct electric current, Math. Comput. Simulat., 78 (2008), 112-120.
  • [9] B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. T. R. Soc. B, 115 (1825), 513-583.
  • [10] C. P. Winsor, The Gompertz Curve as a Growth Curve, Proc. Natl Acad. Sci., 18 (1932), 1-8.
  • [11] L. Ferrante, S. Bompadre, L. P. Leone, Parameter estimation in a Gompertzian stochastic model for tumor growth, Biometrics, 56 (2000), 1076-1081.
  • [12] M. J. Piotrowska, U. Forys, The nature of Hopf bifurcation for the Gompertz model with delays, Math. Comput. Model., 54 (2011), 2183-2198.
  • [13] M. J. Piotrowska, U. Forys, Analysis of the Hopf bifurcation for the family of angiogenesis models. J. Math. Anal. Appl., 382 (2011), 180-203.
  • [14] M. Bodnar, M. J. Piotrowska, U. Forys, Gompertz model with delays and treatment: Mathematical analysis, Math. Biosci. Eng., 10 (2013), 551-563.
  • [15] I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations: with Applications, Oxford University Press, 1991.
  • [16] M. H. Song, Z. W. Yang, M. Z. Liu, Stability of q-methods for advanced differential equations with piecewise continuous arguments, Comput. Math. Appl., 49 (2005), 1295-1301.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Qian Yang 0000-0002-9316-7285

Qi Wang This is me 0000-0003-3578-2551

Project Number 2017A030313031
Publication Date June 10, 2020
Submission Date January 23, 2019
Acceptance Date January 20, 2020
Published in Issue Year 2020

Cite

APA Yang, Q., & Wang, Q. (2020). Numerical Oscillation Analysis for Gompertz Equation with One Delay. Fundamental Journal of Mathematics and Applications, 3(1), 1-7. https://doi.org/10.33401/fujma.623500
AMA Yang Q, Wang Q. Numerical Oscillation Analysis for Gompertz Equation with One Delay. Fundam. J. Math. Appl. June 2020;3(1):1-7. doi:10.33401/fujma.623500
Chicago Yang, Qian, and Qi Wang. “Numerical Oscillation Analysis for Gompertz Equation With One Delay”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 1-7. https://doi.org/10.33401/fujma.623500.
EndNote Yang Q, Wang Q (June 1, 2020) Numerical Oscillation Analysis for Gompertz Equation with One Delay. Fundamental Journal of Mathematics and Applications 3 1 1–7.
IEEE Q. Yang and Q. Wang, “Numerical Oscillation Analysis for Gompertz Equation with One Delay”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 1–7, 2020, doi: 10.33401/fujma.623500.
ISNAD Yang, Qian - Wang, Qi. “Numerical Oscillation Analysis for Gompertz Equation With One Delay”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 1-7. https://doi.org/10.33401/fujma.623500.
JAMA Yang Q, Wang Q. Numerical Oscillation Analysis for Gompertz Equation with One Delay. Fundam. J. Math. Appl. 2020;3:1–7.
MLA Yang, Qian and Qi Wang. “Numerical Oscillation Analysis for Gompertz Equation With One Delay”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 1-7, doi:10.33401/fujma.623500.
Vancouver Yang Q, Wang Q. Numerical Oscillation Analysis for Gompertz Equation with One Delay. Fundam. J. Math. Appl. 2020;3(1):1-7.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a