Research Article
BibTex RIS Cite
Year 2021, , 159 - 164, 30.09.2021
https://doi.org/10.33401/fujma.890533

Abstract

References

  • [1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, 30(1989), 26-37.
  • [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
  • [3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
  • [4] R. George, B. Fisher, Some generalized results of fixed points in cone b-metric spaces, Math. Moravic., 17(2013), 39- 50.
  • [5] F. Khojasteh, E. Karapinar, S. Randenvic, q-metric space: a generalization, Math. Probl. Eng., Art. ID:504609, (2013), 7pp.
  • [6] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29(6)(2015), 1189- 1194.
  • [7] A.Chanda, B. Damjanovi ´ c, L. K. Dey, Fixed point results on q-metric spaces via simulation functions, Filomat, 31(11)(2017), 3365-3375.
  • [8] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b- simulation functions, Iranian J. Math. Sci. Inform., 11(1)(2016), 123- 136.

Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions

Year 2021, , 159 - 164, 30.09.2021
https://doi.org/10.33401/fujma.890533

Abstract

We introduce the concept of $b$-$\theta$-metric space as a generalization of $\theta$-metric space and investigate some of its properties. Then, we establish a fixed point theorem in $b$-$\theta$-metric spaces via $b$-simulation functions. Thus, we deduce Banach type fixed point in such spaces. Also, we discuss some fixed point results in relation to existing ones.

References

  • [1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, 30(1989), 26-37.
  • [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
  • [3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
  • [4] R. George, B. Fisher, Some generalized results of fixed points in cone b-metric spaces, Math. Moravic., 17(2013), 39- 50.
  • [5] F. Khojasteh, E. Karapinar, S. Randenvic, q-metric space: a generalization, Math. Probl. Eng., Art. ID:504609, (2013), 7pp.
  • [6] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29(6)(2015), 1189- 1194.
  • [7] A.Chanda, B. Damjanovi ´ c, L. K. Dey, Fixed point results on q-metric spaces via simulation functions, Filomat, 31(11)(2017), 3365-3375.
  • [8] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b- simulation functions, Iranian J. Math. Sci. Inform., 11(1)(2016), 123- 136.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Esra Dalan Yıldırım 0000-0002-6553-771X

Ayşegül Çaksu Güler 0000-0002-6811-9919

Oya Bedre Özbakır 0000-0002-6582-4460

Publication Date September 30, 2021
Submission Date March 3, 2021
Acceptance Date September 1, 2021
Published in Issue Year 2021

Cite

APA Dalan Yıldırım, E., Çaksu Güler, A., & Özbakır, O. B. (2021). Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundamental Journal of Mathematics and Applications, 4(3), 159-164. https://doi.org/10.33401/fujma.890533
AMA Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. September 2021;4(3):159-164. doi:10.33401/fujma.890533
Chicago Dalan Yıldırım, Esra, Ayşegül Çaksu Güler, and Oya Bedre Özbakır. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications 4, no. 3 (September 2021): 159-64. https://doi.org/10.33401/fujma.890533.
EndNote Dalan Yıldırım E, Çaksu Güler A, Özbakır OB (September 1, 2021) Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundamental Journal of Mathematics and Applications 4 3 159–164.
IEEE E. Dalan Yıldırım, A. Çaksu Güler, and O. B. Özbakır, “Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions”, Fundam. J. Math. Appl., vol. 4, no. 3, pp. 159–164, 2021, doi: 10.33401/fujma.890533.
ISNAD Dalan Yıldırım, Esra et al. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications 4/3 (September 2021), 159-164. https://doi.org/10.33401/fujma.890533.
JAMA Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. 2021;4:159–164.
MLA Dalan Yıldırım, Esra et al. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 3, 2021, pp. 159-64, doi:10.33401/fujma.890533.
Vancouver Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. 2021;4(3):159-64.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a