Research Article
BibTex RIS Cite
Year 2021, , 264 - 270, 01.12.2021
https://doi.org/10.33401/fujma.975200

Abstract

References

  • [1] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [2] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
  • [3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
  • [4] G. Calvaruso, A. Perrone, Five-dimensional paracontact Lie algebras, Differ. Geom. Appl., 45 (2016), 115-129.
  • [5] N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from G2(2) structures, Turk. J. Math., 42 (2018), 3025-3033.
  • [6] Ş Aktay, On the relation between G_2 structures and almost paracontact structures, J. Geom. Symmetry Phys., 56 (2020), 31-43.
  • [7] N. Özdemir, M. Solgun, Ş. Aktay, Almost para-contact metric structures on 5-dimensional nilpotent Lie algebras, Fundamental J. Math. App., 3 (2020), 175-184.
  • [8] I. K¨upeli Erken, On normal almost paracontact metric manifolds of dimension 3, Facta Univ. Ser. Math. Inform., 5, (2015), 777-788.
  • [9] S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geo.,109 (2018), 18.
  • [10] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkh¨auser, Switzerland, 2002, ISBN 978-0817642617.
  • [11] S. Tanno, The topology of contact Riemannian manifolds, Ilinois J. Math., 12 (1968), 700-717.
  • [12] S. Tanno, Harmonic forms and Betti numbers of certain contact manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.

Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds

Year 2021, , 264 - 270, 01.12.2021
https://doi.org/10.33401/fujma.975200

Abstract

In this paper, we investigate the effect of $\mathcal{D}$-homothetic deformation on almost para-contact metric manifolds. The main results of the paper are about some classes of almost paracontact metric manifolds in which the characteristic vector field is parallel. It is shown that certain classes are invariant under the $\mathcal{D}$-homothetic deformation.



References

  • [1] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [2] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
  • [3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
  • [4] G. Calvaruso, A. Perrone, Five-dimensional paracontact Lie algebras, Differ. Geom. Appl., 45 (2016), 115-129.
  • [5] N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from G2(2) structures, Turk. J. Math., 42 (2018), 3025-3033.
  • [6] Ş Aktay, On the relation between G_2 structures and almost paracontact structures, J. Geom. Symmetry Phys., 56 (2020), 31-43.
  • [7] N. Özdemir, M. Solgun, Ş. Aktay, Almost para-contact metric structures on 5-dimensional nilpotent Lie algebras, Fundamental J. Math. App., 3 (2020), 175-184.
  • [8] I. K¨upeli Erken, On normal almost paracontact metric manifolds of dimension 3, Facta Univ. Ser. Math. Inform., 5, (2015), 777-788.
  • [9] S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geo.,109 (2018), 18.
  • [10] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkh¨auser, Switzerland, 2002, ISBN 978-0817642617.
  • [11] S. Tanno, The topology of contact Riemannian manifolds, Ilinois J. Math., 12 (1968), 700-717.
  • [12] S. Tanno, Harmonic forms and Betti numbers of certain contact manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mehmet Solgun 0000-0002-2275-7763

Publication Date December 1, 2021
Submission Date July 27, 2021
Acceptance Date November 10, 2021
Published in Issue Year 2021

Cite

APA Solgun, M. (2021). Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundamental Journal of Mathematics and Applications, 4(4), 264-270. https://doi.org/10.33401/fujma.975200
AMA Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. December 2021;4(4):264-270. doi:10.33401/fujma.975200
Chicago Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications 4, no. 4 (December 2021): 264-70. https://doi.org/10.33401/fujma.975200.
EndNote Solgun M (December 1, 2021) Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundamental Journal of Mathematics and Applications 4 4 264–270.
IEEE M. Solgun, “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”, Fundam. J. Math. Appl., vol. 4, no. 4, pp. 264–270, 2021, doi: 10.33401/fujma.975200.
ISNAD Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications 4/4 (December 2021), 264-270. https://doi.org/10.33401/fujma.975200.
JAMA Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. 2021;4:264–270.
MLA Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 4, 2021, pp. 264-70, doi:10.33401/fujma.975200.
Vancouver Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. 2021;4(4):264-70.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a