Research Article
BibTex RIS Cite

Pedal Sets of Unitals in Projective Planes of Order 16

Year 2022, Volume: 5 Issue: 3, 152 - 159, 23.09.2022
https://doi.org/10.33401/fujma.1025044

Abstract

In this article, we perform computer searches for pedal sets of all known unitals in the known planes of order 16. Special points of unitals having at least one special tangent are studied in detail. It is shown that unitals without special points exist. Open problems regarding the computational results presented in this study are discussed. A conjecture about the numbers of line types of an unital $U$ and its dual unital $U^\perp$ is formulated.



References

  • [1] S. Barwick, G. Ebert, Unitals in Projective Planes, Springer, Switzerland, 2008.
  • [2] C. J. Colbourn, J. H. Dinitz (editors), Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, USA, 2007.
  • [3] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford, UK, 1998.
  • [4] F. Buekenhout, Existence of unitals in finite translation planes of order q2 with a kernel of q, Geom. Dedicata, 5 (1976), 189-194.
  • [5] R. Metz, On a class of unitals, Geom. Dedicata, 8 (1979), 125-126.
  • [6] S. G. Barwick, A characterization of the classical unital, Geom. Dedicata, 52 (1994), 175-180.
  • [7] L. A. Rosati, Disegni unitari nei piani di Hughes, Geom. Dedicata, 27 (1988), 295-299.
  • [8] B. Kestenband, A Family of Unitals in the Hughes Plane, Canad. J. Math., 42(6) (1990), 1067-1083.
  • [9] S. Bagchi, B. Bagchi, Designs from pairs of finite fields. A cyclic unital U(6) and other regular Steiner 2-designs, J. Combin. Theory Ser. A, 52(1) (1989), 51-61.
  • [10] R. D. Baker, G. L. Elbert, On Buekenhout-Metz unitals of odd order, J. Combin. Theory Ser. A, 60(1) (1992), 67-84.
  • [11] A. Betten, D. Betten, V. D. Tonchev, Unitals and codes, Discrete Math., 267(1-3) (2003), 23-33.
  • [12] S. D. Stoichev, M. Gezek, Unitals in projective planes of order 16, Turk J. Math., 45(2) (2021), 1001-1014.
  • [13] T. Penttila, G. F. Royle, M. K. Simpson, Hyperovals in the known projective planes of order 16, J. Combin. Des., 4 (1996), 59-65.
  • [14] M. Gezek, R. Mathon, V. D. Tonchev, Maximal arcs, codes, and new links between projective planes of order 16, Electron. J. Combin., 27(1) (2020), P1.62.
  • [15] S. D. Stoichev, V. D. Tonchev, Unital designs in planes of order 16, Discrete Appl. Math., 102(1-2) (2000), 151-158.
  • [16] V. Krˇcadinac, K. Smoljak, Pedal sets of unitals in projective planes of order 9 and 16, Sarajevo J. Math., 7(20) (2011), 255-264.
  • [17] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4) (1997), 235–265.
  • [18] J. M. Dover, Some design-theoretic properties of Buekenhout unitals, J. Combin. Des., 4(6) (1996), 449-456.
Year 2022, Volume: 5 Issue: 3, 152 - 159, 23.09.2022
https://doi.org/10.33401/fujma.1025044

Abstract

References

  • [1] S. Barwick, G. Ebert, Unitals in Projective Planes, Springer, Switzerland, 2008.
  • [2] C. J. Colbourn, J. H. Dinitz (editors), Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, USA, 2007.
  • [3] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford, UK, 1998.
  • [4] F. Buekenhout, Existence of unitals in finite translation planes of order q2 with a kernel of q, Geom. Dedicata, 5 (1976), 189-194.
  • [5] R. Metz, On a class of unitals, Geom. Dedicata, 8 (1979), 125-126.
  • [6] S. G. Barwick, A characterization of the classical unital, Geom. Dedicata, 52 (1994), 175-180.
  • [7] L. A. Rosati, Disegni unitari nei piani di Hughes, Geom. Dedicata, 27 (1988), 295-299.
  • [8] B. Kestenband, A Family of Unitals in the Hughes Plane, Canad. J. Math., 42(6) (1990), 1067-1083.
  • [9] S. Bagchi, B. Bagchi, Designs from pairs of finite fields. A cyclic unital U(6) and other regular Steiner 2-designs, J. Combin. Theory Ser. A, 52(1) (1989), 51-61.
  • [10] R. D. Baker, G. L. Elbert, On Buekenhout-Metz unitals of odd order, J. Combin. Theory Ser. A, 60(1) (1992), 67-84.
  • [11] A. Betten, D. Betten, V. D. Tonchev, Unitals and codes, Discrete Math., 267(1-3) (2003), 23-33.
  • [12] S. D. Stoichev, M. Gezek, Unitals in projective planes of order 16, Turk J. Math., 45(2) (2021), 1001-1014.
  • [13] T. Penttila, G. F. Royle, M. K. Simpson, Hyperovals in the known projective planes of order 16, J. Combin. Des., 4 (1996), 59-65.
  • [14] M. Gezek, R. Mathon, V. D. Tonchev, Maximal arcs, codes, and new links between projective planes of order 16, Electron. J. Combin., 27(1) (2020), P1.62.
  • [15] S. D. Stoichev, V. D. Tonchev, Unital designs in planes of order 16, Discrete Appl. Math., 102(1-2) (2000), 151-158.
  • [16] V. Krˇcadinac, K. Smoljak, Pedal sets of unitals in projective planes of order 9 and 16, Sarajevo J. Math., 7(20) (2011), 255-264.
  • [17] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4) (1997), 235–265.
  • [18] J. M. Dover, Some design-theoretic properties of Buekenhout unitals, J. Combin. Des., 4(6) (1996), 449-456.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mustafa Gezek 0000-0001-5488-9341

Publication Date September 23, 2022
Submission Date November 17, 2021
Acceptance Date April 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Gezek, M. (2022). Pedal Sets of Unitals in Projective Planes of Order 16. Fundamental Journal of Mathematics and Applications, 5(3), 152-159. https://doi.org/10.33401/fujma.1025044
AMA Gezek M. Pedal Sets of Unitals in Projective Planes of Order 16. Fundam. J. Math. Appl. September 2022;5(3):152-159. doi:10.33401/fujma.1025044
Chicago Gezek, Mustafa. “Pedal Sets of Unitals in Projective Planes of Order 16”. Fundamental Journal of Mathematics and Applications 5, no. 3 (September 2022): 152-59. https://doi.org/10.33401/fujma.1025044.
EndNote Gezek M (September 1, 2022) Pedal Sets of Unitals in Projective Planes of Order 16. Fundamental Journal of Mathematics and Applications 5 3 152–159.
IEEE M. Gezek, “Pedal Sets of Unitals in Projective Planes of Order 16”, Fundam. J. Math. Appl., vol. 5, no. 3, pp. 152–159, 2022, doi: 10.33401/fujma.1025044.
ISNAD Gezek, Mustafa. “Pedal Sets of Unitals in Projective Planes of Order 16”. Fundamental Journal of Mathematics and Applications 5/3 (September 2022), 152-159. https://doi.org/10.33401/fujma.1025044.
JAMA Gezek M. Pedal Sets of Unitals in Projective Planes of Order 16. Fundam. J. Math. Appl. 2022;5:152–159.
MLA Gezek, Mustafa. “Pedal Sets of Unitals in Projective Planes of Order 16”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 3, 2022, pp. 152-9, doi:10.33401/fujma.1025044.
Vancouver Gezek M. Pedal Sets of Unitals in Projective Planes of Order 16. Fundam. J. Math. Appl. 2022;5(3):152-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a