Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 3, 177 - 187, 30.09.2023
https://doi.org/10.33401/fujma.1292885

Abstract

References

  • [1] A.R. Grandjean, M.J. Vale, 2-Modulos cruzados an la cohomologia de andr´e-quillen, Memorias de la Real Academia de Ciencias, 22 (1986), 1–28.
  • [2] D. Conduche, Modules crois´es c´en´eralis´es de longueur 2, J. Pure Appl. Algebra, 34 (1984), 155-178.
  • [3] D. Conduche, Simplicial crossed modules and mapping cones, Georgian Math. J., 10(4) (2003), 623-636.
  • [4] D. Guin-Wal´ery, J-L. Loday, Obsruction´a l’excision en K-theories Alg´ebrique, Evanston conference on Algebraic K-Theory 1980, (Lectute Notes Mathematics) 854, 179-216, Berlin Heidelberg New York, Springer 1981.
  • [5] G.J. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra, 52 (1988), 277-282.
  • [6] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453-496.
  • [7] L. Illusie, Complex Cotangent et Deformations I, II, Springer Lecture Notes in Mathematics 239 1971 II 283 1972.
  • [8] M. Andre, Homologie des Algebres Commutatives, Die Grundlehren der Mathematischen Wissenchaften, 206 New York, Springer-Verlag, 1974.
  • [9] Ö. Gürmen Alansal, E. Ulualan, Peiffer pairings in multisimplicial groups and crossed n-cubes and applications for bisimplicial groups, Turkish J. Math., 45(1) (2021), 360-386.
  • [10] P. Carrasco, A.M. Cegarra, Group-theoretic algebraic models for homotopy types, J. Pure Appl. Algebra, 75 (1991), 19-235.
  • [11] T. Porter, Homology of commutative algebras and an invariant of simis and vasconceles, J. Algebr., 99 (1986), 458-465.
  • [12] T. Porter, n-type of simplicial groups and crossed n-cubes, Topol., 32 (1993), 5-24.
  • [13] Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3(1) (1997), 1-23.
  • [14] Z. Arvasi, Crossed squares and 2-crossed modules of commutative algebras, Theory Appl. Categ., 3(7) (1997), 160-181.

Bisimplicial Commutative Algebras and Crossed Squares

Year 2023, Volume: 6 Issue: 3, 177 - 187, 30.09.2023
https://doi.org/10.33401/fujma.1292885

Abstract

A simplicial commutative algebra with Moore complex of length 1 gives a crossed module structure over commutative algebras. In this study, we will give 2-dimensional version of this result by giving hypercrossed complex pairings for a bisimplicial algebra and its Moore bicomplex. We give a detailed calculation in low dimensions for these pairings to see their role in the structures of crossed squares and bisimplicial algebras. In this context, we prove that if the Moore bicomplex of a bisimplicial commutative algebra is of length 1, then it gives a crossed square structure over commutative algebras.

References

  • [1] A.R. Grandjean, M.J. Vale, 2-Modulos cruzados an la cohomologia de andr´e-quillen, Memorias de la Real Academia de Ciencias, 22 (1986), 1–28.
  • [2] D. Conduche, Modules crois´es c´en´eralis´es de longueur 2, J. Pure Appl. Algebra, 34 (1984), 155-178.
  • [3] D. Conduche, Simplicial crossed modules and mapping cones, Georgian Math. J., 10(4) (2003), 623-636.
  • [4] D. Guin-Wal´ery, J-L. Loday, Obsruction´a l’excision en K-theories Alg´ebrique, Evanston conference on Algebraic K-Theory 1980, (Lectute Notes Mathematics) 854, 179-216, Berlin Heidelberg New York, Springer 1981.
  • [5] G.J. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra, 52 (1988), 277-282.
  • [6] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453-496.
  • [7] L. Illusie, Complex Cotangent et Deformations I, II, Springer Lecture Notes in Mathematics 239 1971 II 283 1972.
  • [8] M. Andre, Homologie des Algebres Commutatives, Die Grundlehren der Mathematischen Wissenchaften, 206 New York, Springer-Verlag, 1974.
  • [9] Ö. Gürmen Alansal, E. Ulualan, Peiffer pairings in multisimplicial groups and crossed n-cubes and applications for bisimplicial groups, Turkish J. Math., 45(1) (2021), 360-386.
  • [10] P. Carrasco, A.M. Cegarra, Group-theoretic algebraic models for homotopy types, J. Pure Appl. Algebra, 75 (1991), 19-235.
  • [11] T. Porter, Homology of commutative algebras and an invariant of simis and vasconceles, J. Algebr., 99 (1986), 458-465.
  • [12] T. Porter, n-type of simplicial groups and crossed n-cubes, Topol., 32 (1993), 5-24.
  • [13] Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3(1) (1997), 1-23.
  • [14] Z. Arvasi, Crossed squares and 2-crossed modules of commutative algebras, Theory Appl. Categ., 3(7) (1997), 160-181.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Özgün Gürmen Alansal 0000-0003-2851-986X

Erdal Ulualan 0000-0002-4823-8267

Publication Date September 30, 2023
Submission Date May 5, 2023
Acceptance Date September 22, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Gürmen Alansal, Ö., & Ulualan, E. (2023). Bisimplicial Commutative Algebras and Crossed Squares. Fundamental Journal of Mathematics and Applications, 6(3), 177-187. https://doi.org/10.33401/fujma.1292885
AMA Gürmen Alansal Ö, Ulualan E. Bisimplicial Commutative Algebras and Crossed Squares. Fundam. J. Math. Appl. September 2023;6(3):177-187. doi:10.33401/fujma.1292885
Chicago Gürmen Alansal, Özgün, and Erdal Ulualan. “Bisimplicial Commutative Algebras and Crossed Squares”. Fundamental Journal of Mathematics and Applications 6, no. 3 (September 2023): 177-87. https://doi.org/10.33401/fujma.1292885.
EndNote Gürmen Alansal Ö, Ulualan E (September 1, 2023) Bisimplicial Commutative Algebras and Crossed Squares. Fundamental Journal of Mathematics and Applications 6 3 177–187.
IEEE Ö. Gürmen Alansal and E. Ulualan, “Bisimplicial Commutative Algebras and Crossed Squares”, Fundam. J. Math. Appl., vol. 6, no. 3, pp. 177–187, 2023, doi: 10.33401/fujma.1292885.
ISNAD Gürmen Alansal, Özgün - Ulualan, Erdal. “Bisimplicial Commutative Algebras and Crossed Squares”. Fundamental Journal of Mathematics and Applications 6/3 (September 2023), 177-187. https://doi.org/10.33401/fujma.1292885.
JAMA Gürmen Alansal Ö, Ulualan E. Bisimplicial Commutative Algebras and Crossed Squares. Fundam. J. Math. Appl. 2023;6:177–187.
MLA Gürmen Alansal, Özgün and Erdal Ulualan. “Bisimplicial Commutative Algebras and Crossed Squares”. Fundamental Journal of Mathematics and Applications, vol. 6, no. 3, 2023, pp. 177-8, doi:10.33401/fujma.1292885.
Vancouver Gürmen Alansal Ö, Ulualan E. Bisimplicial Commutative Algebras and Crossed Squares. Fundam. J. Math. Appl. 2023;6(3):177-8.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a