Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 4, 236 - 252, 31.12.2024
https://doi.org/10.33401/fujma.1578534

Abstract

References

  • [1] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, (2000). $ \href{https://rgmia.org/papers/monographs/Master.pdf}{\mbox{[Web]}} $
  • [2] S.S. Dragomir, On The Hadamard’s Inequality For Convex Functions on the Co-ordinates in a Rectangle from the Plane, Taiwanese J. Math., 5(4) (2001), 775-788. $ \href{https://doi.org/10.11650/twjm/1500574995}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-1542394739&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28ON+THE+HADAMARD%E2%80%99S+INEQULALITY+FOR+CONVEX+FUNCTIONS+ON+THE+CO-ORDINATES+IN+A+RECTANGLE+FROM+THE+PLANE%29&sessionSearchId=ff199f78906cad6afa4af87f1f80443f&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000173556800007}{\mbox{[Web of Science]}} $
  • [3] S. Varosanec,On h-convexity, J. Math. Anal. Appl., 326 (2077), 303-311. $ \href{https://doi.org/10.1016/j.jmaa.2006.02.086}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33750610962&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+h-convexity%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000242730700023}{\mbox{[Web of Science]}} $
  • [4] M.A. Latif and M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, Int. J. Math. Anal., 3(33-36) (2009), 1645-1656. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79251558517&origin=resultslist&sort=plf-t&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+Hadmard-Type+Inequalities+for+h-Convex+Functions+on+the+Co-ordinates%29&relpos=0}{\mbox{[Scopus]}} $
  • [5] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, (1992). $ \href{https://doi.org/10.1016/s0076-5392%2808%29x6162-4}{\mbox{[CrossRef]}}$
  • [6] M. Iqbal, S. Qaisar and M. Muddassar, A short note on integral inequality of type Hermite–Hadamard through convexity, J. Comput. Anal. Appl., 21(5) (2016), 946-953. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85014511542&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+short+note+on+integral+inequality+of+type+Hermite--Hadamard+through+convexity%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000368960300012}{\mbox{[Web of Science]}} $
  • [7] S.S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. $\href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0002448458&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Two+inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+trapezoidal+formula%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [8] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(9–10) (2013), 2403–2407. $ \href{https://doi.org/10.1016/j.mcm.2011.12.048}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875664244&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Hermite%E2%80%93Hadamard%E2%80%99s+inequalities+for+fractional+integrals+and+related+fractional+inequalities%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=125}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000317262100039}{\mbox{[Web of Science]}} $
  • [9] M.Z. Sarıkaya, E. Set, M.E. O¨ zdemir, S.S. Dragomir,New some Hadamard’s type inequalities for Co-ordinated convex functions, Tamsui Oxf. J. Math. Sci., 28(2) (2012), 137-152. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875239482&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+some+Hadamard%27s+type+inequalities+for+co-ordinated+convex+functions%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [10] M.Z. Sarıkaya, A. Akuurt, H. Budak, M.E. Yıldırım and H. Yıldırım, Hermite-Hadamard’s inequalities for conformable fractional integrals, Int. J. Optim. Control: Theor. Appl., 9(1), 49-59(2019). $ \href{https://doi.org/10.11121/ijocta.01.2019.00559}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85066103606&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Hermite-Hadamard%27s+inequalities+for+conformable+fractional+integrals%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=1}{\mbox{[Scopus]}} $
  • [11] G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993). $ \href{https://www.semanticscholar.org/paper/Fractional-Integrals-and-Derivatives%3A-Theory-and-Samko-Kilbas/897fb8e45375c8fee443db9f69016c48f4129176}{\mbox{[Web]}} $
  • [12] I. Podlubny, Fractional Differantial Equations, Academic Press, eBook ISBN: 9780080531984, San Diego CA, (1999).
  • [13] S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, (1993). $ \href{http://lib.ysu.am/disciplines_bk/b6c0b30496074d6bc08b794381aca81a.pdf}{\mbox{[Web]}} $
  • [14] A. Akkurt, M.E. Yıldırım and H. Yıldırım, A new Generalized fractional derivative and integral, Konuralp J. Math., 5(2) (2017), 248-259. $ \href{https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/28490/315229}{\mbox{[Web]}} $
  • [15] A. Akkurt, M.Z. Sarıkaya, H. Budak and H. Yıldırım, On the Hadamard’s type inequalities for Co-ordinated convex functions via fractional integrals, J. King Saud Univ. Sci., 29(3) (2017), 380-387. $\href{https://doi.org/10.1016/j.jksus.2016.06.003}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85003794207&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Hadamard%27s+type+inequalities+for+Co-ordinated+convex+functions+via+fractional+integrals%22%29&sessionSearchId=f23218ac34d3c1d4fd0d144855621200&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456305200012}{\mbox{[Web of Science]}} $
  • [16] M.K. Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Aust. J. Math. Anal. Appl., 11(1) (2014), 1-7. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84932173392&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22An+improvement+of+the+Hermite-Hadamard+inequality+for+functions+convex+on+the+coordinates%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [17] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. $ \href{https://doi.org/10.1016/j.cam.2014.01.002}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84893186929&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+new+definition+of+fractional+derivative%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=497}{\mbox{[Scopus]}} $
  • [18] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54(3) (2017), 903-917. $ \href{http://dx.doi.org/10.1007/s10092-017-0213-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85009170962&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28General+conformable+fractional+derivative+and+its+physical+interpretation%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000410163200012}{\mbox{[Web of Science]}} $
  • [19] T.U. Khan and M.A.Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. $ \href{https://doi.org/10.1016/j.cam.2018.07.018}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85050987862&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+conformable+fractional+operators%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=4}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000449246500026}{\mbox{[Web of Science]}} $
  • [20] H. Budak, New version of Simpson type inequality for Y-Hilfer fractional integrals, Adv. Anal. Appl. Math., 1(1) (2024), 1-11. $\href{https://doi.org/10.62298/advmath.3}{\mbox{[CrossRef]}} $
  • [21] M. Maaz, M. Muawwaz, U. Ali, M.D. Faiz, E.A. Rahman and A.Qayyum, New extension in Ostrowski’s type inequalities by using 13-step linear kernel, Adv. Anal. Appl. Math., 1(1) (2024), 55-67. $ \href{https://doi.org/10.62298/advmath.4}{\mbox{[CrossRef]}} $
  • [22] M.Z. Sarıkaya, H. Budak and F. Usta, On generalized the conformable fractional calculus, TWMS J. App. Eng. Math., 9(4) (2019), 792-799. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096570607&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+generalized+the+conformable+fractional+calculus%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000488642900011}{\mbox{[Web of Science]}} $
  • [23] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279, 2015, 57-66. $\href{https://doi.org/10.1016/j.cam.2014.10.016}{\mbox{[CrossRef]}} \href{https://www.sciencedirect.com/science/article/pii/S0377042714004622}{\mbox{[Web]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000348259100005}{\mbox{[Web of Science]}} $
  • [24] A.A. Abdelhakim, The flaw in the conformable calculus: it is conformable because it is not fractional, Fract. Calc. Appl. Anal., 22(2) (2019), 242-254. $ \href{https://doi.org/10.1515/fca-2019-0016}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85067095094&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+flaw+in+the+conformable+calculus%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468966600002}{\mbox{[Web of Science]}} $
  • [25] A. Hyder, A.H. Soliman, A new generalized q-conformable calculus and its applications in mathematical physics, Phys. Scr., 96(1) (2020), 015208. $ \href{https://doi.org/10.1088/1402-4896/abc6d9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096538146&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+new+generalized+%CE%B8-conformable+calculus+and+its+applications+in+mathematical+physics%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000588257500001}{\mbox{[Web of Science]}} $
  • [26] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, (2006). $ \href{https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C}{\mbox{[Web]}} $
  • [27] M.Z. Sarıkaya, On the Hermite-Hadamard-type inequalities for Co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25(2) (2014), 134-147. $ \href{https://doi.org/10.1080/10652469.2013.824436}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84890430251&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+the+Hermite%E2%80%93Hadamard-type+inequalities+for+co-ordinated+convex+function+via+fractional+integrals%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=5}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328110600005}{\mbox{[Web of Science]}} $
  • [28] F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. $ \href{https://doi.org/10.1186/s13662-017-1306-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85028006940&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+a+new+class+of+fractional+operators%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=744}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000408335400002}{\mbox{[Web of Science]}}$
  • [29] M. Bozkurt, A. Akkurt and H. Yıldırım, Conformable derivatives and integrals for the functions of two variables, Konuralp J. Math., 9(1) (2021), 49-59. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85186523687&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Conformable+derivatives+and+integrals+for+the+functions+of+two+variables%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [30] M.E. Kiriş and G. Bayrak, New version of Hermite-Hadamard inequality for Co-ordinated convex function via generalized conformable integrals, Filomat, 38(16) (2024), 5575–5589. $ \href{https://doi.org/10.2298/FIL2416575K}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85194053809&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28New+version+of+Hermite-Hadamard+inequality+for+co-ordinated+convex+function+via+generalized+conformable+integrals%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001337381700001}{\mbox{[Web of Science]}} $
  • [31] A.A. Hyder, A.A. Almoneef, H. Budak, and M.A. Barakat, On new fractional version of generalized Hermite-Hadamard inequalities, Mathematics, 10(18) (2022), 3337. $ \href{https://doi.org/10.3390/math10183337}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85138598109&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+New+Fractional+Version+of+Generalized+Hermite-Hadamard+Inequalities%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=19}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000857766500001}{\mbox{[Web of Science]}}$
  • [32] M.E. Kiriş and G. Bayrak, Coordinated convex mapping approach to trapezoid type inequalities with generalized conformable integrals, Filomat 38(33) (2024), (Accepted).

Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings

Year 2024, Volume: 7 Issue: 4, 236 - 252, 31.12.2024
https://doi.org/10.33401/fujma.1578534

Abstract

In this study, some new trapezoid type inequalities are generalized for $h-$ convex functions in coordinates by means of generalized conformable fractional integrals. For functions with $h-$convex absolute values of their partial derivatives, some new trapezoid type inequalities are obtained using the well-known Holder and Power Mean inequalities. In addition, some findings of this study include some results based on Riemann Liouville fractional integrals.

References

  • [1] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, (2000). $ \href{https://rgmia.org/papers/monographs/Master.pdf}{\mbox{[Web]}} $
  • [2] S.S. Dragomir, On The Hadamard’s Inequality For Convex Functions on the Co-ordinates in a Rectangle from the Plane, Taiwanese J. Math., 5(4) (2001), 775-788. $ \href{https://doi.org/10.11650/twjm/1500574995}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-1542394739&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28ON+THE+HADAMARD%E2%80%99S+INEQULALITY+FOR+CONVEX+FUNCTIONS+ON+THE+CO-ORDINATES+IN+A+RECTANGLE+FROM+THE+PLANE%29&sessionSearchId=ff199f78906cad6afa4af87f1f80443f&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000173556800007}{\mbox{[Web of Science]}} $
  • [3] S. Varosanec,On h-convexity, J. Math. Anal. Appl., 326 (2077), 303-311. $ \href{https://doi.org/10.1016/j.jmaa.2006.02.086}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33750610962&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+h-convexity%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000242730700023}{\mbox{[Web of Science]}} $
  • [4] M.A. Latif and M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, Int. J. Math. Anal., 3(33-36) (2009), 1645-1656. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79251558517&origin=resultslist&sort=plf-t&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+Hadmard-Type+Inequalities+for+h-Convex+Functions+on+the+Co-ordinates%29&relpos=0}{\mbox{[Scopus]}} $
  • [5] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, (1992). $ \href{https://doi.org/10.1016/s0076-5392%2808%29x6162-4}{\mbox{[CrossRef]}}$
  • [6] M. Iqbal, S. Qaisar and M. Muddassar, A short note on integral inequality of type Hermite–Hadamard through convexity, J. Comput. Anal. Appl., 21(5) (2016), 946-953. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85014511542&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+short+note+on+integral+inequality+of+type+Hermite--Hadamard+through+convexity%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000368960300012}{\mbox{[Web of Science]}} $
  • [7] S.S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. $\href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0002448458&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Two+inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+trapezoidal+formula%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [8] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(9–10) (2013), 2403–2407. $ \href{https://doi.org/10.1016/j.mcm.2011.12.048}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875664244&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Hermite%E2%80%93Hadamard%E2%80%99s+inequalities+for+fractional+integrals+and+related+fractional+inequalities%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=125}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000317262100039}{\mbox{[Web of Science]}} $
  • [9] M.Z. Sarıkaya, E. Set, M.E. O¨ zdemir, S.S. Dragomir,New some Hadamard’s type inequalities for Co-ordinated convex functions, Tamsui Oxf. J. Math. Sci., 28(2) (2012), 137-152. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875239482&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+some+Hadamard%27s+type+inequalities+for+co-ordinated+convex+functions%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [10] M.Z. Sarıkaya, A. Akuurt, H. Budak, M.E. Yıldırım and H. Yıldırım, Hermite-Hadamard’s inequalities for conformable fractional integrals, Int. J. Optim. Control: Theor. Appl., 9(1), 49-59(2019). $ \href{https://doi.org/10.11121/ijocta.01.2019.00559}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85066103606&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Hermite-Hadamard%27s+inequalities+for+conformable+fractional+integrals%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=1}{\mbox{[Scopus]}} $
  • [11] G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993). $ \href{https://www.semanticscholar.org/paper/Fractional-Integrals-and-Derivatives%3A-Theory-and-Samko-Kilbas/897fb8e45375c8fee443db9f69016c48f4129176}{\mbox{[Web]}} $
  • [12] I. Podlubny, Fractional Differantial Equations, Academic Press, eBook ISBN: 9780080531984, San Diego CA, (1999).
  • [13] S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, (1993). $ \href{http://lib.ysu.am/disciplines_bk/b6c0b30496074d6bc08b794381aca81a.pdf}{\mbox{[Web]}} $
  • [14] A. Akkurt, M.E. Yıldırım and H. Yıldırım, A new Generalized fractional derivative and integral, Konuralp J. Math., 5(2) (2017), 248-259. $ \href{https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/28490/315229}{\mbox{[Web]}} $
  • [15] A. Akkurt, M.Z. Sarıkaya, H. Budak and H. Yıldırım, On the Hadamard’s type inequalities for Co-ordinated convex functions via fractional integrals, J. King Saud Univ. Sci., 29(3) (2017), 380-387. $\href{https://doi.org/10.1016/j.jksus.2016.06.003}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85003794207&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Hadamard%27s+type+inequalities+for+Co-ordinated+convex+functions+via+fractional+integrals%22%29&sessionSearchId=f23218ac34d3c1d4fd0d144855621200&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456305200012}{\mbox{[Web of Science]}} $
  • [16] M.K. Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Aust. J. Math. Anal. Appl., 11(1) (2014), 1-7. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84932173392&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22An+improvement+of+the+Hermite-Hadamard+inequality+for+functions+convex+on+the+coordinates%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [17] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. $ \href{https://doi.org/10.1016/j.cam.2014.01.002}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84893186929&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+new+definition+of+fractional+derivative%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=497}{\mbox{[Scopus]}} $
  • [18] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54(3) (2017), 903-917. $ \href{http://dx.doi.org/10.1007/s10092-017-0213-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85009170962&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28General+conformable+fractional+derivative+and+its+physical+interpretation%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000410163200012}{\mbox{[Web of Science]}} $
  • [19] T.U. Khan and M.A.Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. $ \href{https://doi.org/10.1016/j.cam.2018.07.018}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85050987862&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+conformable+fractional+operators%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=4}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000449246500026}{\mbox{[Web of Science]}} $
  • [20] H. Budak, New version of Simpson type inequality for Y-Hilfer fractional integrals, Adv. Anal. Appl. Math., 1(1) (2024), 1-11. $\href{https://doi.org/10.62298/advmath.3}{\mbox{[CrossRef]}} $
  • [21] M. Maaz, M. Muawwaz, U. Ali, M.D. Faiz, E.A. Rahman and A.Qayyum, New extension in Ostrowski’s type inequalities by using 13-step linear kernel, Adv. Anal. Appl. Math., 1(1) (2024), 55-67. $ \href{https://doi.org/10.62298/advmath.4}{\mbox{[CrossRef]}} $
  • [22] M.Z. Sarıkaya, H. Budak and F. Usta, On generalized the conformable fractional calculus, TWMS J. App. Eng. Math., 9(4) (2019), 792-799. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096570607&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+generalized+the+conformable+fractional+calculus%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000488642900011}{\mbox{[Web of Science]}} $
  • [23] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279, 2015, 57-66. $\href{https://doi.org/10.1016/j.cam.2014.10.016}{\mbox{[CrossRef]}} \href{https://www.sciencedirect.com/science/article/pii/S0377042714004622}{\mbox{[Web]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000348259100005}{\mbox{[Web of Science]}} $
  • [24] A.A. Abdelhakim, The flaw in the conformable calculus: it is conformable because it is not fractional, Fract. Calc. Appl. Anal., 22(2) (2019), 242-254. $ \href{https://doi.org/10.1515/fca-2019-0016}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85067095094&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+flaw+in+the+conformable+calculus%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468966600002}{\mbox{[Web of Science]}} $
  • [25] A. Hyder, A.H. Soliman, A new generalized q-conformable calculus and its applications in mathematical physics, Phys. Scr., 96(1) (2020), 015208. $ \href{https://doi.org/10.1088/1402-4896/abc6d9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096538146&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+new+generalized+%CE%B8-conformable+calculus+and+its+applications+in+mathematical+physics%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000588257500001}{\mbox{[Web of Science]}} $
  • [26] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, (2006). $ \href{https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C}{\mbox{[Web]}} $
  • [27] M.Z. Sarıkaya, On the Hermite-Hadamard-type inequalities for Co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25(2) (2014), 134-147. $ \href{https://doi.org/10.1080/10652469.2013.824436}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84890430251&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+the+Hermite%E2%80%93Hadamard-type+inequalities+for+co-ordinated+convex+function+via+fractional+integrals%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=5}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328110600005}{\mbox{[Web of Science]}} $
  • [28] F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. $ \href{https://doi.org/10.1186/s13662-017-1306-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85028006940&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+a+new+class+of+fractional+operators%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=744}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000408335400002}{\mbox{[Web of Science]}}$
  • [29] M. Bozkurt, A. Akkurt and H. Yıldırım, Conformable derivatives and integrals for the functions of two variables, Konuralp J. Math., 9(1) (2021), 49-59. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85186523687&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Conformable+derivatives+and+integrals+for+the+functions+of+two+variables%22%29&sessionSearchId=a3046c90cf8101a01c3cbc88438ba9c4&relpos=0}{\mbox{[Scopus]}} $
  • [30] M.E. Kiriş and G. Bayrak, New version of Hermite-Hadamard inequality for Co-ordinated convex function via generalized conformable integrals, Filomat, 38(16) (2024), 5575–5589. $ \href{https://doi.org/10.2298/FIL2416575K}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85194053809&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28New+version+of+Hermite-Hadamard+inequality+for+co-ordinated+convex+function+via+generalized+conformable+integrals%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001337381700001}{\mbox{[Web of Science]}} $
  • [31] A.A. Hyder, A.A. Almoneef, H. Budak, and M.A. Barakat, On new fractional version of generalized Hermite-Hadamard inequalities, Mathematics, 10(18) (2022), 3337. $ \href{https://doi.org/10.3390/math10183337}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85138598109&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28On+New+Fractional+Version+of+Generalized+Hermite-Hadamard+Inequalities%29&sessionSearchId=21e029aecd428d56366970d3fdd8de5e&relpos=19}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000857766500001}{\mbox{[Web of Science]}}$
  • [32] M.E. Kiriş and G. Bayrak, Coordinated convex mapping approach to trapezoid type inequalities with generalized conformable integrals, Filomat 38(33) (2024), (Accepted).
There are 32 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Mehmet Eyüp Kiriş 0000-0002-6463-5289

Murat Yücel Ay This is me 0009-0003-1844-1445

Gözde Bayrak This is me 0000-0003-4073-380X

Publication Date December 31, 2024
Submission Date November 3, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Kiriş, M. E., Ay, M. Y., & Bayrak, G. (2024). Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings. Fundamental Journal of Mathematics and Applications, 7(4), 236-252. https://doi.org/10.33401/fujma.1578534
AMA Kiriş ME, Ay MY, Bayrak G. Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings. Fundam. J. Math. Appl. December 2024;7(4):236-252. doi:10.33401/fujma.1578534
Chicago Kiriş, Mehmet Eyüp, Murat Yücel Ay, and Gözde Bayrak. “Trapezoid-Type Inequalities Based on Generalized Conformable Integrals via Co-Ordinated $h$-Convex Mappings”. Fundamental Journal of Mathematics and Applications 7, no. 4 (December 2024): 236-52. https://doi.org/10.33401/fujma.1578534.
EndNote Kiriş ME, Ay MY, Bayrak G (December 1, 2024) Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings. Fundamental Journal of Mathematics and Applications 7 4 236–252.
IEEE M. E. Kiriş, M. Y. Ay, and G. Bayrak, “Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings”, Fundam. J. Math. Appl., vol. 7, no. 4, pp. 236–252, 2024, doi: 10.33401/fujma.1578534.
ISNAD Kiriş, Mehmet Eyüp et al. “Trapezoid-Type Inequalities Based on Generalized Conformable Integrals via Co-Ordinated $h$-Convex Mappings”. Fundamental Journal of Mathematics and Applications 7/4 (December 2024), 236-252. https://doi.org/10.33401/fujma.1578534.
JAMA Kiriş ME, Ay MY, Bayrak G. Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings. Fundam. J. Math. Appl. 2024;7:236–252.
MLA Kiriş, Mehmet Eyüp et al. “Trapezoid-Type Inequalities Based on Generalized Conformable Integrals via Co-Ordinated $h$-Convex Mappings”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 4, 2024, pp. 236-52, doi:10.33401/fujma.1578534.
Vancouver Kiriş ME, Ay MY, Bayrak G. Trapezoid-type Inequalities Based on Generalized Conformable Integrals via Co-ordinated $h$-Convex Mappings. Fundam. J. Math. Appl. 2024;7(4):236-52.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a