Research Article
BibTex RIS Cite

Generalized Bullen Type Inequalities and Their Applications

Year 2025, Volume: 8 Issue: 2, 65 - 71, 30.06.2025
https://doi.org/10.33401/fujma.1557116

Abstract

This paper presents a novel extension of Bullen-type inequalities for convex functions by leveraging recently established generalized identities. Through rigorous proofs, we derive new inequalities that exhibit strong connections to both the left- and right-hand sides of the Hermite-Hadamard inequalities for Riemann-integrable functions. Additionally, we apply these results to various special means of two positive numbers.

References

  • [1] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite Hadamard inequalities and applications, RGMIA Monographs, Victoria University, (2000). $\href{https://rgmia.org/papers/monographs/Master.pdf}{\mbox{[Web]}} $
  • [2] H. Budak, E. Pehlivan and P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Commun. Math. Anal., 18(1) (2021), 73-88. $ \href{https://doi.org/10.22130/scma.2020.121963.759}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85106670717&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+new+extensions+of+Hermite-Hadamard+inequalities+for+generalized+fractional+integrals%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000644432100006}{\mbox{[Web of Science]}} $
  • [3] H. Budak, C.C. Bilişik and M.Z. Sarıkaya, On some new extensions of inequalities of Hermite-Hadamard type for generalized fractional integrals, Sahand Commun. Math. Anal., 19(2) (2022), 65-79. $ \href{https://doi.org/10.22130/scma.2022.539417.992}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85135809704}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000829504300005}{\mbox{[Web of Science]}} $
  • [4] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezodial formula, Appl. Math. Lett., 11(5) (1998), 91-95. $ \href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0002448458}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [5] H. Kavurmacı, M. Avcı and M.E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011(86) (2011). $ \href{https://doi.org/10.1186/1029-242X-2011-86}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84864093101}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000301731300001}{\mbox{[Web of Science]}} $
  • [6] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl.Math. Comput., 147(1) (2004), 137-146. $ \href{https://doi.org/10.1016/S0096-3003(02)00657-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0141525042}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185952900012}{\mbox{[Web of Science]}} $
  • [7] U.S. Kırmaci, M.K. Bakula, M.E. Özdemir and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193(1) (2007), 26-35. $ \href{https://doi.org/10.1016/j.amc.2007.03.030}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/35248836071}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000253495400004}{\mbox{[Web of Science]}} $
  • [8] P.O. Mohammed and I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 12(4) (2020), 610. $ \href{https://doi.org/10.3390/sym12040610}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85084607059}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000540222200121}{\mbox{[Web of Science]}} $
  • [9] H. Öğülmüş and M.Z. Sarıkaya, Some Hermite–Hadamard type inequalities for h-convex functions and their applications, Iran. J. Sci. Technol. Trans. A: Sci., 44(3) (2020), 813-819. $\href{https://doi.org/10.1007/s40995-020-00880-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85086095154}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000537926700002}{\mbox{[Web of Science]}} $
  • [10] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., 220(2013). $\href{https://doi.org/10.1186/1029-242X-2013-220}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84894475585}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000323605100003}{\mbox{[Web of Science]}} $
  • [11] J. Wang, X. Li, M. Feckan and Y. Zhou, Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(11), 2241-2253. $ \href{https://doi.org/10.1080/00036811.2012.727986}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84887890155}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000327723000001}{\mbox{[Web of Science]}} $
  • [12] J. Wang, X. Li and C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20(4), (2013), 655-666. $ \href{https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-20/issue-4/Refinements-of-Hermite-Hadamard-Type-Inequalities-Involving-Fractional-Integrals/10.36045/bbms/1382448186.full}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/84879620827}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328302300006}{\mbox{[Web of Science]}} $
  • [13] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl., 2013(315) (2013), 1-15. $\href{https://doi.org/10.1186/1029-242X-2013-325}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84893168407}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000323661100001}{\mbox{[Web of Science]}} $
  • [14] M. Çakmak, The differentiable h-convex functions involving the Bullen inequality, Acta Univ. Apulensis, 2021 (65), 29-36. $ \href{https://doi.org/10.17114/j.aua.2020.65.03}{\mbox{[CrossRef]}} $
  • [15] M. Çakmak, On some Bullen-type inequalities via conformable fractional integrals, J. Sci. Perspect., 3(4) (2019), 285-298. $ \href{https://doi.org/10.26900/jsp.3.030}{\mbox{[CrossRef]}} $
  • [16] T. Du, C. Luo and Z. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29(07) (2021), 2150188. $ \href{https://doi.org/10.1142/s0218348x21501887}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85119416634}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000723712200047}{\mbox{[Web of Science]}} $
  • [17] S. Erden and M.Z. Sarıkaya, Generalized Bullen type inequalities for local fractional integrals and its applications, Palest. J. Math., 9(2) (2020). $ \href{https://pjm.ppu.edu/sites/default/files/papers/PJM_May2020_945_to_956.pdf}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/85094599846}{\mbox{[Scopus]}} $
  • [18] A. Fahad, S.I. Butt, B. Bayraktar, M. Anwar and Y. Wang, Some new Bullen-type inequalities obtained via fractional integral operators, Axioms, 12(7) (2023), 691. $ \href{https://doi.org/10.3390/axioms12070691}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85165980275}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001037975300001}{\mbox{[Web of Science]}} $
  • [19] F. Hezenci, H. Budak and H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turk. J. Math., 47(4) (2023), 1306-1317. $ \href{https://doi.org/10.55730/1300-0098.3429}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85160302395}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000996022900018}{\mbox{[Web of Science]}} $
  • [20] I. İscan, T. Toplu and F. Yetgin, Some new inequalities on generalization of Hermite-Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula, Kragujev. J. Math., 45(4) (2021), 647-657. $ \href{http://dx.doi.org/10.46793/KgJMat2104.647I}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000684187800012}{\mbox{[Web of Science]}} $
  • [21] S. Hussain and S. Mehboob, On some generalized fractional integral Bullen type inequalities with applications, J. Fract. Calc. Nonlinear Syst., 2(2) (2021), 93-112. $\href{https://doi.org/10.48185/jfcns.v2i2.390}{\mbox{[CrossRef]}} $
  • [22] M.Z. Sarıkaya, On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type, Acta Univ. Apulensis Math., (73) (2023), 33-52. $ \href{https://doi.org/10.17114/j.aua.2023.73.03}{\mbox{[CrossRef]}} $
  • [23] M.Z. Sarıkaya and N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54(9-10) (2011), 2175-2182. $ \href{http://dx.doi.org/10.1016/j.mcm.2011.05.026}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/80051579462}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000293829300028}{\mbox{[Web of Science]}} $
  • [24] B.N. Yaşar, N. Aktan and G.Ç. Kızılkan, Generalization of Bullen type, trapezoid type, midpoint type and Simpson type inequalities for s-convex in the fourth sense, Turk. J. Inequal., 2022, 6(2), 40-51. $\href{http://tjinequality.com/articles/06-02-004.pdf}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/85166016496}{\mbox{[Scopus]}} $
  • [25] B.Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42(3) (2013), 243-257. $\href{https://www.scopus.com/pages/publications/84887924562}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000324009500005}{\mbox{[Web of Science]}} $

Year 2025, Volume: 8 Issue: 2, 65 - 71, 30.06.2025
https://doi.org/10.33401/fujma.1557116

Abstract

References

  • [1] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite Hadamard inequalities and applications, RGMIA Monographs, Victoria University, (2000). $\href{https://rgmia.org/papers/monographs/Master.pdf}{\mbox{[Web]}} $
  • [2] H. Budak, E. Pehlivan and P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Commun. Math. Anal., 18(1) (2021), 73-88. $ \href{https://doi.org/10.22130/scma.2020.121963.759}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85106670717&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+new+extensions+of+Hermite-Hadamard+inequalities+for+generalized+fractional+integrals%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000644432100006}{\mbox{[Web of Science]}} $
  • [3] H. Budak, C.C. Bilişik and M.Z. Sarıkaya, On some new extensions of inequalities of Hermite-Hadamard type for generalized fractional integrals, Sahand Commun. Math. Anal., 19(2) (2022), 65-79. $ \href{https://doi.org/10.22130/scma.2022.539417.992}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85135809704}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000829504300005}{\mbox{[Web of Science]}} $
  • [4] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezodial formula, Appl. Math. Lett., 11(5) (1998), 91-95. $ \href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0002448458}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [5] H. Kavurmacı, M. Avcı and M.E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011(86) (2011). $ \href{https://doi.org/10.1186/1029-242X-2011-86}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84864093101}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000301731300001}{\mbox{[Web of Science]}} $
  • [6] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl.Math. Comput., 147(1) (2004), 137-146. $ \href{https://doi.org/10.1016/S0096-3003(02)00657-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0141525042}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185952900012}{\mbox{[Web of Science]}} $
  • [7] U.S. Kırmaci, M.K. Bakula, M.E. Özdemir and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193(1) (2007), 26-35. $ \href{https://doi.org/10.1016/j.amc.2007.03.030}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/35248836071}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000253495400004}{\mbox{[Web of Science]}} $
  • [8] P.O. Mohammed and I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 12(4) (2020), 610. $ \href{https://doi.org/10.3390/sym12040610}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85084607059}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000540222200121}{\mbox{[Web of Science]}} $
  • [9] H. Öğülmüş and M.Z. Sarıkaya, Some Hermite–Hadamard type inequalities for h-convex functions and their applications, Iran. J. Sci. Technol. Trans. A: Sci., 44(3) (2020), 813-819. $\href{https://doi.org/10.1007/s40995-020-00880-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85086095154}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000537926700002}{\mbox{[Web of Science]}} $
  • [10] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., 220(2013). $\href{https://doi.org/10.1186/1029-242X-2013-220}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84894475585}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000323605100003}{\mbox{[Web of Science]}} $
  • [11] J. Wang, X. Li, M. Feckan and Y. Zhou, Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(11), 2241-2253. $ \href{https://doi.org/10.1080/00036811.2012.727986}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84887890155}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000327723000001}{\mbox{[Web of Science]}} $
  • [12] J. Wang, X. Li and C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20(4), (2013), 655-666. $ \href{https://projecteuclid.org/journals/bulletin-of-the-belgian-mathematical-society-simon-stevin/volume-20/issue-4/Refinements-of-Hermite-Hadamard-Type-Inequalities-Involving-Fractional-Integrals/10.36045/bbms/1382448186.full}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/84879620827}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328302300006}{\mbox{[Web of Science]}} $
  • [13] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl., 2013(315) (2013), 1-15. $\href{https://doi.org/10.1186/1029-242X-2013-325}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84893168407}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000323661100001}{\mbox{[Web of Science]}} $
  • [14] M. Çakmak, The differentiable h-convex functions involving the Bullen inequality, Acta Univ. Apulensis, 2021 (65), 29-36. $ \href{https://doi.org/10.17114/j.aua.2020.65.03}{\mbox{[CrossRef]}} $
  • [15] M. Çakmak, On some Bullen-type inequalities via conformable fractional integrals, J. Sci. Perspect., 3(4) (2019), 285-298. $ \href{https://doi.org/10.26900/jsp.3.030}{\mbox{[CrossRef]}} $
  • [16] T. Du, C. Luo and Z. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29(07) (2021), 2150188. $ \href{https://doi.org/10.1142/s0218348x21501887}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85119416634}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000723712200047}{\mbox{[Web of Science]}} $
  • [17] S. Erden and M.Z. Sarıkaya, Generalized Bullen type inequalities for local fractional integrals and its applications, Palest. J. Math., 9(2) (2020). $ \href{https://pjm.ppu.edu/sites/default/files/papers/PJM_May2020_945_to_956.pdf}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/85094599846}{\mbox{[Scopus]}} $
  • [18] A. Fahad, S.I. Butt, B. Bayraktar, M. Anwar and Y. Wang, Some new Bullen-type inequalities obtained via fractional integral operators, Axioms, 12(7) (2023), 691. $ \href{https://doi.org/10.3390/axioms12070691}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85165980275}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001037975300001}{\mbox{[Web of Science]}} $
  • [19] F. Hezenci, H. Budak and H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turk. J. Math., 47(4) (2023), 1306-1317. $ \href{https://doi.org/10.55730/1300-0098.3429}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85160302395}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000996022900018}{\mbox{[Web of Science]}} $
  • [20] I. İscan, T. Toplu and F. Yetgin, Some new inequalities on generalization of Hermite-Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula, Kragujev. J. Math., 45(4) (2021), 647-657. $ \href{http://dx.doi.org/10.46793/KgJMat2104.647I}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000684187800012}{\mbox{[Web of Science]}} $
  • [21] S. Hussain and S. Mehboob, On some generalized fractional integral Bullen type inequalities with applications, J. Fract. Calc. Nonlinear Syst., 2(2) (2021), 93-112. $\href{https://doi.org/10.48185/jfcns.v2i2.390}{\mbox{[CrossRef]}} $
  • [22] M.Z. Sarıkaya, On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type, Acta Univ. Apulensis Math., (73) (2023), 33-52. $ \href{https://doi.org/10.17114/j.aua.2023.73.03}{\mbox{[CrossRef]}} $
  • [23] M.Z. Sarıkaya and N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54(9-10) (2011), 2175-2182. $ \href{http://dx.doi.org/10.1016/j.mcm.2011.05.026}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/80051579462}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000293829300028}{\mbox{[Web of Science]}} $
  • [24] B.N. Yaşar, N. Aktan and G.Ç. Kızılkan, Generalization of Bullen type, trapezoid type, midpoint type and Simpson type inequalities for s-convex in the fourth sense, Turk. J. Inequal., 2022, 6(2), 40-51. $\href{http://tjinequality.com/articles/06-02-004.pdf}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/85166016496}{\mbox{[Scopus]}} $
  • [25] B.Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42(3) (2013), 243-257. $\href{https://www.scopus.com/pages/publications/84887924562}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000324009500005}{\mbox{[Web of Science]}} $
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Mehmet Zeki Sarikaya 0000-0002-6165-9242

Publication Date June 30, 2025
Submission Date September 27, 2024
Acceptance Date June 26, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Sarikaya, M. Z. (2025). Generalized Bullen Type Inequalities and Their Applications. Fundamental Journal of Mathematics and Applications, 8(2), 65-71. https://doi.org/10.33401/fujma.1557116
AMA Sarikaya MZ. Generalized Bullen Type Inequalities and Their Applications. Fundam. J. Math. Appl. June 2025;8(2):65-71. doi:10.33401/fujma.1557116
Chicago Sarikaya, Mehmet Zeki. “Generalized Bullen Type Inequalities and Their Applications”. Fundamental Journal of Mathematics and Applications 8, no. 2 (June 2025): 65-71. https://doi.org/10.33401/fujma.1557116.
EndNote Sarikaya MZ (June 1, 2025) Generalized Bullen Type Inequalities and Their Applications. Fundamental Journal of Mathematics and Applications 8 2 65–71.
IEEE M. Z. Sarikaya, “Generalized Bullen Type Inequalities and Their Applications”, Fundam. J. Math. Appl., vol. 8, no. 2, pp. 65–71, 2025, doi: 10.33401/fujma.1557116.
ISNAD Sarikaya, Mehmet Zeki. “Generalized Bullen Type Inequalities and Their Applications”. Fundamental Journal of Mathematics and Applications 8/2 (June2025), 65-71. https://doi.org/10.33401/fujma.1557116.
JAMA Sarikaya MZ. Generalized Bullen Type Inequalities and Their Applications. Fundam. J. Math. Appl. 2025;8:65–71.
MLA Sarikaya, Mehmet Zeki. “Generalized Bullen Type Inequalities and Their Applications”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 2, 2025, pp. 65-71, doi:10.33401/fujma.1557116.
Vancouver Sarikaya MZ. Generalized Bullen Type Inequalities and Their Applications. Fundam. J. Math. Appl. 2025;8(2):65-71.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897