Research Article
BibTex RIS Cite

An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems

Year 2025, Volume: 8 Issue: 3, 169 - 179, 30.09.2025
https://doi.org/10.33401/fujma.1623200

Abstract

Metric fixed-point theory has received a lot of recent attention. The Banach fixed-point theorem served as the foundation for this theory. This theorem's generalizations have been looked at using various methodologies. One of these entails generalizing the prevalent contractive condition, while the other involves generalizing the prevalent metric space. Numerous generalized metric spaces were defined in the literature for the second generalization. As a new generalization of both a metric and an $S$-metric space in this context, our major goal is to present the idea of a triple-composed $S$% -metric space. We also provide some fundamental and topological ideas about triple-composed $S$-metric space. We look into some of this idea's characteristics. On triple-composed $S$-metric spaces, we demonstrate various fixed-point theorems. Finally, we provide the system of linear equations with an application.

References

  • [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 2 (1922), 133–181. $ \href{https://eudml.org/doc/213289}{\mbox{[Web]}} $
  • [2] S.K. Chatterjea, Fixed-Point Theorems, C. R. Acad. Bulg. Sci., 25 (1972), 727–730.
  • [3] Lj. B. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12(26) (1971), 19–26.
  • [4] M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 37 (1962), 74–79. $ \href{https://doi.org/10.1112/jlms/s1-37.1.74}{\mbox{[CrossRef]}} $
  • [5] G. Hardy and T. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973), 201–206. $ \href{https://doi.org/10.4153/CMB-1973-036-0}{\mbox{[CrossRef]}} $
  • [6] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. $\href{https://doi.org/10.2307/2316437}{\mbox{[CrossRef]}} $
  • [7] V.V. Nemytskii, The fixed point method in analysis, Uspekhi Mat. Nauk, 1 (1936), 141–174. $ \href{https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=5947&option_lang=eng}{\mbox{[Web]}} $
  • [8] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121–122. $ \href{https://doi.org/10.4153/CMB-1971-024-9}{\mbox{[CrossRef]}} $
  • [9] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. $\href{https://doi.org/10.1090/S0002-9947-1977-0433430-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84968491333?origin=resultslist}{\mbox{[Scopus]}} $
  • [10] V.M. Sehgal, On fixed and periodic points for a class of mappings, J. Lond. Math. Soc., 5(2) (1972), 571–576. $ \href{https://doi.org/10.1112/jlms/s2-5.3.571}{\mbox{[CrossRef]}} $
  • [11] I. Ayoob, N.Z. Chuan and N. Mlaiki, Double-Composed Metric Spaces, Mathematics, 11(8) (2023), 1866. $ \href{https://doi.org/10.3390/math11081866}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85153743708?origin=resultslist}{\mbox{[Scopus]}} $
  • [12] İ. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22(1) (2021), 153–171. $\href{https://doi.org/10.18514/MMN.2021.3173}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000661139500013}{\mbox{[Web of Science]}} $
  • [13] N. Özgür and N. Taş, On S-metric spaces with some topological aspects, Electron. J. Math. Anal. Appl., 11(2) (2023), 1–8. $\href{https://doi.org/10.21608/ejmaa.2023.206319.1029}{\mbox{[CrossRef]}} $
  • [14] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(3) (2012), 258–266. $ \href{https://www.emis.de/journals/MV/123/mv12309.pdf}{\mbox{[Web]}} $
  • [15] S. Sedghi and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(1) (2014), 113–124. $ \href{https://www.vesnik.math.rs/landing.php?name=mv14112&p=mv141.cap&utm_source=chatgpt.com}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/84888229460?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000436967600012}{\mbox{[Web of Science]}} $
  • [16] H. Aydi, N. Taş, N.Y. Özgür and N. Mlaiki, Fixed-discs in rectangular metric spaces, Symmetry, 11(2) (2019), 294. $ \href{https://doi.org/10.3390/sym11020294}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85069818629?origin=resultslist}{\mbox{[Scopus]}} $
  • [17] H.A. Hammad, M.G. Alshehri and A. Shehata, Control functions in G-metric spaces: Novel methods for q-fixed points and q-fixed circles with an application, Symmetry, 15(1) (2023), 164. $ \href{https://doi.org/10.3390/sym15010164}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000920909100001}{\mbox{[Web of Science]}} $
  • [18] E. Kaplan, N. Mlaiki, N. Taş, S. Haque and A.K. Souayah, Some fixed-circle results with different auxiliary functions, J. Funct. Spaces, (2022), 2775733. $ \href{https://doi.org/10.1155/2022/2775733}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85132435513?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000813886100001}{\mbox{[Web of Science]}} $
  • [19] E. Kaplan, New fixed-circle results on fuzzy metric spaces with an application to dynamic market equilibrium, Mathematica Moravica, 27(1) (2023), 73–83. $ \href{https://doi.org/10.5937/MatMor2301073K}{\mbox{[CrossRef]}} $
  • [20] N. Mlaiki, N. Özgür, N. Taş and D. Santina, On the fixed circle problem on metric spaces and related results, Axioms, 12(4) (2023), 401. $ \href{https://doi.org/10.3390/axioms12040401}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85153727582?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000980893400001}{\mbox{[Web of Science]}} $
  • [21] N.Y. Özgür and N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42(4) (2019), 1433–1449. $ \href{https://doi.org/10.1007/s40840-017-0555-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85067400704?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000471896200010}{\mbox{[Web of Science]}}$
  • [22] N. Özgür, Fixed-disc results via simulation functions, Turkish J. Math., 43(6) (2019), 2794–2805. $ \href{https://doi.org/10.3906/mat-1812-44}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85077596235?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000497971800011}{\mbox{[Web of Science]}} $
  • [23] N.Y. Özguür and N. Taş, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Mathematical Sciences, 11(1) (2017), 7–16. $ \href{https://doi.org/10.1007/s40096-016-0199-4}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000400319900002}{\mbox{[Web of Science]}} $
There are 23 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Nihal Taş 0000-0002-4535-4019

Publication Date September 30, 2025
Submission Date January 19, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Taş, N. (2025). An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems. Fundamental Journal of Mathematics and Applications, 8(3), 169-179. https://doi.org/10.33401/fujma.1623200
AMA Taş N. An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems. Fundam. J. Math. Appl. September 2025;8(3):169-179. doi:10.33401/fujma.1623200
Chicago Taş, Nihal. “An Overview of Triple-Composed $S$-Metric Spaces With Few Fixed-Point Theorems”. Fundamental Journal of Mathematics and Applications 8, no. 3 (September 2025): 169-79. https://doi.org/10.33401/fujma.1623200.
EndNote Taş N (September 1, 2025) An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems. Fundamental Journal of Mathematics and Applications 8 3 169–179.
IEEE N. Taş, “An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems”, Fundam. J. Math. Appl., vol. 8, no. 3, pp. 169–179, 2025, doi: 10.33401/fujma.1623200.
ISNAD Taş, Nihal. “An Overview of Triple-Composed $S$-Metric Spaces With Few Fixed-Point Theorems”. Fundamental Journal of Mathematics and Applications 8/3 (September2025), 169-179. https://doi.org/10.33401/fujma.1623200.
JAMA Taş N. An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems. Fundam. J. Math. Appl. 2025;8:169–179.
MLA Taş, Nihal. “An Overview of Triple-Composed $S$-Metric Spaces With Few Fixed-Point Theorems”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 3, 2025, pp. 169-7, doi:10.33401/fujma.1623200.
Vancouver Taş N. An Overview of Triple-Composed $S$-Metric Spaces with Few Fixed-Point Theorems. Fundam. J. Math. Appl. 2025;8(3):169-7.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897