Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Agricultural Waste on Dye Removal

Yıl 2023, Cilt: 35 Sayı: 1, 61 - 70, 28.03.2023
https://doi.org/10.35234/fumbd.1153612

Öz

In this study, the effect of bean husk, which is abundant in our country as agricultural waste, on methylene blue adsorption was investigated. XRD, SEM and FTIR analyzes were carried out to determine the surface properties of the adsorbent. Within the scope of adsorption studies, the effects of methylene blue concentration, amount of adsorbent, temperature and contact time were studied. Langmuir, Freundlich and Temkin isotherm models were investigated to define the adsorption isotherm. The pseudo-first-order, pseudo-second-order and Avrami models and the adsorption of methylene blue on the bean husk were evaluated in terms of kinetics. It has been determined that the isotherm graphs prepared by using the data obtained as a result of the experimental studies are more compatible with the Freundlich isotherm models. After kinetic studies in the adsorption of methylene blue with bean husk, it is seen that it conforms to the pseudo-second-order kinetic model. Accordingly, it can be said that the adsorption takes place in a multilayered and heterogeneous manner. This result is in agreement with the layered structure in the SEM image of the bean shell. As a result of the studies, it has been revealed that bean husk can be used as an adsorbent in the removal of methylene blue dyestuff that can be found in textile wastewater.

Kaynakça

  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.
  • Sultana, S., Islam, K., Hasan, M. A., Khan, H. J., Khan, M. A. R., Deb, A., ... & Rahman, M. W. (2022). Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives. Environmental Nanotechnology, Monitoring & Management, 17, 100651.
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280(1-3), 1-13.
  • Sarıcı Özdemir, Ç. (2019). Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pine cone. Separation Science and Technology, 54(18), 3046-3054.
  • Hamzezadeh, A., Rashtbari, Y., Afshin, S., Morovati, M., & Vosoughi, M. (2022). Application of low-cost material for adsorption of dye from aqueous solution. International Journal of Environmental Analytical Chemistry, 102(1), 254-269.
  • Ahmed, M. J. (2016). Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering, 4(1), 89-99.
  • Jawad, A. H., Abdulhameed, A. S., Wilson, L. D., Syed-Hassan, S. S. A., ALOthman, Z. A., & Khan, M. R. (2021). High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese Journal of Chemical Engineering, 32, 281-290.
  • Onay, M., & Ozdemir, C. S. (2021). Applications of dye adsorption in fixed bed column and modeling studies. Desalination and Water Treatment, 222, 209-218.
  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. Journal of environmental management, 231, 241-248.
  • Kearns, J. P., Wellborn, L. S., Summers, R. S., & Knappe, D. R. U. (2014). 2, 4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water research, 62, 20-28.
  • Ofomaja, A.E., Naidoo, E.B., (2011). Biosorption of copper from aqueous solution by chemically activated pine cone: A kinetic study. Chem. Eng. J. 175:260-270.
  • Peng, L. C., Gao, J., Yao, S., Lan, X. Q., Li, H. P., & Song, H. (2020). Modified ginkgo leaves for adsorption of methyl violet and malachite green dyes in their aqueous system. Desal. Water Treat, 206, 358-370.
  • Masoudian, N., Rajabi, M., Ghaedi, M., (2019). Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of Congo red and phenol red dyes from wastewaters. Polyhedron 173, 114105.
  • Wu, L., Zhang, X., Thorpe, J. A., Li, L., & Si, Y. (2020). Mussel-inspired polydopamine functionalized recyclable coconut shell derived carbon nanocomposites for efficient adsorption of methylene blue. Journal of Saudi Chemical Society, 24(8), 642-649.
  • Hijab, M., Saleem, J., Parthasarathy, P., Mackey, H. R., & McKay, G. (2021). Two-stage optimisation for malachite green removal using activated date pits. Biomass Conversion and Biorefinery, 11(2), 727-740.
  • Jabar, J. M., & Odusote, Y. A. (2020). Removal of cibacron blue 3G-A (CB) dye from aqueous solution using chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arabian Journal of Chemistry, 13(5), 5417-5429.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Temkin, M. J.; Pyzhev, V. (1940). Recent Modifications to Langmuir Isotherms. Acta Phys. Chem., 12, 271–279.
  • Guo, X., & Wang, J. (2019). A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.
  • Munagapati, V. S., Wen, H. Y., Wen, J. C., Gutha, Y., Tian, Z., Reddy, G. M., & Garcia, J. R. (2021). Anionic congo red dye removal from aqueous medium using Turkey tail (Trametes versicolor) fungal biomass: adsorption kinetics, isotherms, thermodynamics, reusability, and characterization. Journal of Dispersion Science and Technology, 42(12), 1785-1798.
  • Lagergren S."Zurtheorie dar sogenannten adsorption gelosterstoffe Kungliga Svenska Veterskopsakademiens". Handlinga, 24, 1-39, 1898.
  • Ho YS, McKay G." Sorption of dye from aqueous solutionbypeat". Chemical Engneering Journal, 70, 115-124, 1998.
  • Benjelloun, M., Miyah, Y., Evrendilek, G. A., Zerrouq, F., & Lairini, S. (2021). Recent advances in adsorption kinetic models: their application to dye types. Arabian Journal of Chemistry, 14(4), 103031.

Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi

Yıl 2023, Cilt: 35 Sayı: 1, 61 - 70, 28.03.2023
https://doi.org/10.35234/fumbd.1153612

Öz

Bu çalışmada, tarımsal atık olarak ülkemizde çok miktarda bulunan fasulye kabuğunun metilen mavisi adsorpsiyonunda etkisi incelenmiştir. Adsorbanın yüzey özelliklerinin belirlenmesi amacı ile XRD, SEM ve FTIR analizleri gerçekleştirilmiştir. Adsorpsiyon çalışmaları kapsamında metilen mavisi konsantrasyonunun, adsorban miktarının, sıcaklığın ve temas süresinin etkisi çalışılmıştır. Adsorpsiyon izotermini tanımlayabilmek için Langmuir, Freundlich ve Temkin izoterm modelleri incelenmiştir. Yalancı birinci derece, yalancı ikinci derece ve Avrami modelleri ile metilen mavisinin fasulye kabuğu üzerindeki adsorpsiyonu kinetik açıdan değerlendirilmiştir. Deneysel çalışmalar sonucu elde edilen verilerin kullanılması ile hazırlanan izoterm grafikleri sonrasında Freundlich izoterm modeli ile daha uyumlu olduğu belirlenmiştir. Metilen mavisinin fasulye kabuğu ile adsorpsiyonunda kinetik çalışmalar sonrasında ise yalancı- ikinci mertebe kinetik modele uyum sağladığı görülmektedir. Buna göre adsorpsiyonun çok tabakalı ve heterojen bir biçimde gerçekleştiği söylenebilir. Bu sonuç fasulye kabuğunun SEM görüntüsündeki tabakalı yapı ile uyum içerisindedir. Çalışmalar sonucunda fasulye kabuğunun tekstil atık sularında bulunabilen metilen mavisi boyar maddesinin uzaklaştırılmasında adsorban olarak kullanılabileceği ortaya konulmuştur.

Kaynakça

  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.
  • Sultana, S., Islam, K., Hasan, M. A., Khan, H. J., Khan, M. A. R., Deb, A., ... & Rahman, M. W. (2022). Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives. Environmental Nanotechnology, Monitoring & Management, 17, 100651.
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280(1-3), 1-13.
  • Sarıcı Özdemir, Ç. (2019). Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pine cone. Separation Science and Technology, 54(18), 3046-3054.
  • Hamzezadeh, A., Rashtbari, Y., Afshin, S., Morovati, M., & Vosoughi, M. (2022). Application of low-cost material for adsorption of dye from aqueous solution. International Journal of Environmental Analytical Chemistry, 102(1), 254-269.
  • Ahmed, M. J. (2016). Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering, 4(1), 89-99.
  • Jawad, A. H., Abdulhameed, A. S., Wilson, L. D., Syed-Hassan, S. S. A., ALOthman, Z. A., & Khan, M. R. (2021). High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese Journal of Chemical Engineering, 32, 281-290.
  • Onay, M., & Ozdemir, C. S. (2021). Applications of dye adsorption in fixed bed column and modeling studies. Desalination and Water Treatment, 222, 209-218.
  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. Journal of environmental management, 231, 241-248.
  • Kearns, J. P., Wellborn, L. S., Summers, R. S., & Knappe, D. R. U. (2014). 2, 4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water research, 62, 20-28.
  • Ofomaja, A.E., Naidoo, E.B., (2011). Biosorption of copper from aqueous solution by chemically activated pine cone: A kinetic study. Chem. Eng. J. 175:260-270.
  • Peng, L. C., Gao, J., Yao, S., Lan, X. Q., Li, H. P., & Song, H. (2020). Modified ginkgo leaves for adsorption of methyl violet and malachite green dyes in their aqueous system. Desal. Water Treat, 206, 358-370.
  • Masoudian, N., Rajabi, M., Ghaedi, M., (2019). Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of Congo red and phenol red dyes from wastewaters. Polyhedron 173, 114105.
  • Wu, L., Zhang, X., Thorpe, J. A., Li, L., & Si, Y. (2020). Mussel-inspired polydopamine functionalized recyclable coconut shell derived carbon nanocomposites for efficient adsorption of methylene blue. Journal of Saudi Chemical Society, 24(8), 642-649.
  • Hijab, M., Saleem, J., Parthasarathy, P., Mackey, H. R., & McKay, G. (2021). Two-stage optimisation for malachite green removal using activated date pits. Biomass Conversion and Biorefinery, 11(2), 727-740.
  • Jabar, J. M., & Odusote, Y. A. (2020). Removal of cibacron blue 3G-A (CB) dye from aqueous solution using chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arabian Journal of Chemistry, 13(5), 5417-5429.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Temkin, M. J.; Pyzhev, V. (1940). Recent Modifications to Langmuir Isotherms. Acta Phys. Chem., 12, 271–279.
  • Guo, X., & Wang, J. (2019). A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.
  • Munagapati, V. S., Wen, H. Y., Wen, J. C., Gutha, Y., Tian, Z., Reddy, G. M., & Garcia, J. R. (2021). Anionic congo red dye removal from aqueous medium using Turkey tail (Trametes versicolor) fungal biomass: adsorption kinetics, isotherms, thermodynamics, reusability, and characterization. Journal of Dispersion Science and Technology, 42(12), 1785-1798.
  • Lagergren S."Zurtheorie dar sogenannten adsorption gelosterstoffe Kungliga Svenska Veterskopsakademiens". Handlinga, 24, 1-39, 1898.
  • Ho YS, McKay G." Sorption of dye from aqueous solutionbypeat". Chemical Engneering Journal, 70, 115-124, 1998.
  • Benjelloun, M., Miyah, Y., Evrendilek, G. A., Zerrouq, F., & Lairini, S. (2021). Recent advances in adsorption kinetic models: their application to dye types. Arabian Journal of Chemistry, 14(4), 103031.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm MBD
Yazarlar

Muhammed Onay 0000-0002-4276-0425

Çiğdem Sarıcı Özdemir 0000-0003-2129-3044

Yayımlanma Tarihi 28 Mart 2023
Gönderilme Tarihi 3 Ağustos 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 35 Sayı: 1

Kaynak Göster

APA Onay, M., & Sarıcı Özdemir, Ç. (2023). Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(1), 61-70. https://doi.org/10.35234/fumbd.1153612
AMA Onay M, Sarıcı Özdemir Ç. Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2023;35(1):61-70. doi:10.35234/fumbd.1153612
Chicago Onay, Muhammed, ve Çiğdem Sarıcı Özdemir. “Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, sy. 1 (Mart 2023): 61-70. https://doi.org/10.35234/fumbd.1153612.
EndNote Onay M, Sarıcı Özdemir Ç (01 Mart 2023) Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 1 61–70.
IEEE M. Onay ve Ç. Sarıcı Özdemir, “Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 1, ss. 61–70, 2023, doi: 10.35234/fumbd.1153612.
ISNAD Onay, Muhammed - Sarıcı Özdemir, Çiğdem. “Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/1 (Mart 2023), 61-70. https://doi.org/10.35234/fumbd.1153612.
JAMA Onay M, Sarıcı Özdemir Ç. Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:61–70.
MLA Onay, Muhammed ve Çiğdem Sarıcı Özdemir. “Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 1, 2023, ss. 61-70, doi:10.35234/fumbd.1153612.
Vancouver Onay M, Sarıcı Özdemir Ç. Tarımsal Atığın Boyar Madde Giderimindeki Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(1):61-70.